Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes

Moises Hernandez-Fernandez, Istvan Reguly, Saad Jbabdi, Mike Giles, Stephen Smith, Stamatios N. Sotiropoulos
2019 NeuroImage  
The great potential of computational diffusion MRI (dMRI) relies on indirect inference of tissue microstructure and brain connections, since modelling and tractography frameworks map diffusion measurements to neuroanatomical features. This mapping however can be computationally highly expensive, particularly given the trend of increasing dataset sizes and the complexity in biophysical modelling. Limitations on computing resources can restrict data exploration and methodology development. A step
more » ... forward is to take advantage of the computational power offered by recent parallel computing architectures, especially Graphics Processing Units (GPUs). GPUs are massive parallel processors that offer trillions of floating point operations per second, and have made possible the solution of computationally-intensive scientific problems that were intractable before. However, they are not inherently suited for all problems. Here, we present two different frameworks for accelerating dMRI computations using GPUs that cover the most typical dMRI applications: a framework for performing biophysical modelling and microstructure estimation, and a second framework for performing tractography and long-range connectivity estimation. The former provides a front-end and automatically generates a GPU executable file from a user-specified biophysical model, allowing accelerated non-linear model fitting in both deterministic and stochastic ways (Bayesian inference). The latter performs probabilistic tractography, can generate whole-brain connectomes and supports new functionality for imposing anatomical constraints, such as inherent consideration of surface meshes (GIFTI files) along with volumetric images. We validate the frameworks against well-established CPU-based implementations and we show that despite the very different challenges for parallelising these problems, a single GPU achieves better performance than 200 CPU cores thanks to our parallel designs.
doi:10.1016/j.neuroimage.2018.12.015 pmid:30537563 pmcid:PMC6614035 fatcat:sf3of77bgff7dbzlvgfodxojca