MRG15 Activates theB-mybPromoter through Formation of a Nuclear Complex with the Retinoblastoma Protein and the Novel Protein PAM14

James K. Leung, Nathalie Berube, Susan Venable, Saira Ahmed, Nikolai Timchenko, Olivia M. Pereira-Smith
2001 Journal of Biological Chemistry  
The MORF4-Related Gene on chromosome 15 (MRG15) is a member of a novel family of genes originally identified in studies to reveal cell senescence-inducing factors. MRG15 contains several predicted protein motifs, including a nuclear localization signal, a helix-loop-helix region, a leucine zipper, and a chromodomain. These motifs are commonly associated with transcription factors, suggesting that MRG15 may likewise function as a transcriptional regulator. To examine the potential function(s) of
more » ... MRG15, we sought to identify cellular factors associated with this MRG family member. In this regard, we have found that both the retinoblastoma tumor suppressor (Rb) and a novel nuclear protein PAM14 (Protein Associated with MRG, 14 kDa) specifically associate with MRG15. We have further demonstrated that these interactions require the helix-loop-helix and leucine zipper domains of MRG15. Interestingly we have found all three proteins present in a multiprotein complex, suggesting that at least some of their functions may be interdependent. Although the functions of PAM14 have yet to be elucidated, Rb has several well characterized activities, including repression of E2Factivated promoters such as that of B-myb. Significantly we have demonstrated that MRG15 blocks the Rb-induced repression of this promoter, leading to B-myb promoter activation. Collectively these results suggest that MRG15 regulates transcription through interactions with a cellular protein complex containing Rb and PAM14.
doi:10.1074/jbc.m103435200 pmid:11500496 fatcat:qq44ewej2jhctdaat4rp57hr5q