Electrical Conductivity of Fluorite and Fluorine Conduction

Hanyong Liu, Qiao Zhu, Xiaozhi Yang
2019 Minerals  
Fluorine is a species commonly present in many minerals in the Earth's interior, with a concentration ranging from a few ppm to more than 10 wt. %. Recent experimental studies on fluorine-bearing silicate minerals have proposed that fluorine might be an important charge carrier for electrical conduction of Earth materials at elevated conditions, but the results are somewhat ambiguous. In this investigation, the electrical conductivity of gem-quality natural single crystal fluorite, a simple
more » ... lemental (Ca and F) mineral, has been determined at 1 GPa and 200–650 °C in two replication runs, by a Solartron-1260 Impedance/Gain Phase analyzer in an end-loaded piston-cylinder apparatus. The sample composition remained unchanged after the runs. The conductivity data are reproducible between different runs and between heating-cooling cycles of each run. The conductivity (σ) increases with increasing temperature, and can be described by the Arrhenius law, σ = 10^(5.34 ± 0.07)·exp[−(130 ± 1, kJ/mol)/(RT)], where R is the gas constant and T is the temperature. According to the equation, the conductivity reaches ~0.01 S/m at 650 °C. This elevated conductivity is strong evidence that fluorine is important in charge transport. The simple construction of this mineral indicates that the electrical conduction is dominated by fluoride (F−). Therefore, fluorine is potentially an important charge carrier in influencing the electrical property of Fluorine-bearing Earth materials.
doi:10.3390/min9020072 fatcat:oxn6ndlzzvdwnjuusib4c7hbsi