Novel biomarkers and endoscopic techniques for diagnosing pancreaticobiliary malignancy

Margaret G Keane, Amar Shah, Stephen P Pereira, Deepak Joshi
2017 F1000Research  
F1000 Faculty Reviews are written by members of the prestigious . They are F1000 Faculty commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations. Abstract The UK incidence of pancreatic ductal adenocarcinoma is 9 per 100,000 population, and biliary tract cancer occurs at a rate of 1-2 per 100,000. The incidence of both cancers is
more » ... reasing annually and these tumours continue to be diagnosed late and at an advanced stage, limiting options for curative treatment. Population-based screening programmes do not exist for these cancers, and diagnosis currently is dependent on symptom recognition, but often symptoms are not present until the disease is advanced. Recently, a number of promising blood and urine biomarkers have been described for pancreaticobiliary malignancy and are summarised in this review. Novel endoscopic techniques such as single-operator cholangioscopy and confocal endomicroscopy have been used in some centres to enhance standard endoscopic diagnostic techniques and are also evaluated in this review. PubMed Abstract | Publisher Full Text | Free Full Text 3. CRUK: Cancer Research UK Cancer Stats Incidence 2008. 2011. Reference Source 4. Coupland VH, Kocher HM, Berry DP, et al.: Incidence and survival for hepatic, pancreatic and biliary cancers in England between 1998 and 2007. Cancer Epidemiol. 2012; 36(4): e207-14. PubMed Abstract | Publisher Full Text 5. ; 9. Reference Source 7. Lichtenstein P, Holm NV, Verkasalo PK, et al.: Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78-85. PubMed Abstract | Publisher Full Text 8. Hippisley-Cox J, Coupland C: Identifying patients with suspected pancreatic cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract. 2012; 62(594): e38-45. PubMed Abstract | Publisher Full Text | Free Full Text 9. Stapley S, Peters TJ, Neal RD, et al.: The risk of pancreatic cancer in symptomatic patients in primary care: a large case-control study using electronic records. Br J Cancer. 2012; 106(12): 1940-4. PubMed Abstract | Publisher Full Text | Free Full Text 10. Silverman DT, Dunn JA, Hoover RN, et al.: Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst. 1994; 86(20): 1510-6. PubMed Abstract | Publisher Full Text 11. Fuchs CS, Colditz GA, Stampfer MJ, et al.: A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med. 1996; 156(19): 2255-60. PubMed Abstract | Publisher Full Text 12. Muscat JE, Stellman SD, Hoffmann D, et al.: Smoking and pancreatic cancer in men and women. Cancer Epidemiol Biomarkers Prev. 1997; 6(1): 15-9. PubMed Abstract 13. Bonelli L, Aste H, Bovo P, et al.: Exocrine pancreatic cancer, cigarette smoking, and diabetes mellitus: a case-control study in northern Italy. Pancreas. 2003; 27(2): 143-9. PubMed Abstract | Publisher Full Text 14. Larsson SC, Permert J, Håkansson N, et al.: Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer. 2005; 93(11): 1310-5. PubMed Abstract | Publisher Full Text | Free Full Text 15. Hassan MM, Bondy ML, Wolff RA, et al.: Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol. 2007; 102(12): 2696-707. PubMed Abstract | Publisher Full Text | Free Full Text 16. Gullo L, Tomassetti P, Migliori M, et al.: Do early symptoms of pancreatic cancer exist that can allow an earlier diagnosis? Pancreas. 2001; 22(2): 210-3. PubMed Abstract | Publisher Full Text 17. Ferlay JS, Bray F, Forman D, et al.: GLOBOCAN 2008 v2.0. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. primary sclerosing cholangitis. J Hepatol. 2009; 50(1): 158-64. PubMed Abstract | Publisher Full Text 20. Tyson GL, El-Serag HB: Risk factors for cholangiocarcinoma. Hepatology. 2011; 54(1): 173-84. PubMed Abstract | Publisher Full Text | Free Full Text 21. Chapman RW: Risk factors for biliary tract carcinogenesis. Ann Oncol. 1999; 10(Suppl 4): 308-11. PubMed Abstract | Publisher Full Text 22. de Groen PC, Gores GJ, LaRusso NF, et al.: Biliary tract cancers. N Engl J Med. 1999; 341(18): 1368-78. PubMed Abstract | Publisher Full Text 23. Saluja SS, Sharma R, Pal S, et al.: Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: a prospective study. HPB (Oxford). 2007; 9(5): 373-82. PubMed Abstract | Publisher Full Text | Free Full Text 24. Fernández-Esparrach G, Ginès A, Sánchez M, et al.: Comparison of endoscopic ultrasonography and magnetic resonance cholangiopancreatography in the diagnosis of pancreatobiliary diseases: a prospective study. Am J Gastroenterol. 2007; 102(8): 1632-9. PubMed Abstract | Publisher Full Text 25. Sai JK, Suyama M, Kubokawa Y, et al.: Early detection of extrahepatic bileduct carcinomas in the nonicteric stage by using MRCP followed by EUS. Gastrointest Endosc. 2009; 70(1): 29-36. PubMed Abstract | Publisher Full Text 26. Lee JY: [Multidetector-row CT of malignant biliary obstruction]. Korean J Gastroenterol. 2006; 48(4): 247-55. PubMed Abstract 27. Kalaitzakis E, Levy M, Kamisawa T, et al.: Endoscopic retrograde cholangiography does not reliably distinguish IgG4-associated cholangitis from primary sclerosing cholangitis or cholangiocarcinoma. Clin Gastroenterol Hepatol. 2011; 9(9): 800-803.e2. PubMed Abstract | Publisher Full Text | Free Full Text 28. De Bellis M, Sherman S, Fogel EL, et al.: Tissue sampling at ERCP in suspected malignant biliary strictures (Part 1). Gastrointest Endosc. 2002; 56(4): 552-61. PubMed Abstract | Publisher Full Text 29. Harewood GC, Baron TH, Stadheim LM, et al.: Prospective, blinded assessment of factors influencing the accuracy of biliary cytology interpretation. Am J Gastroenterol. 2004; 99(8): 1464-9. PubMed Abstract | Publisher Full Text 30. Moreno Luna LE, Kipp B, Halling KC, et al.: Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterology. 2006; 131(4): 1064-72. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 31. Klein AP, Lindström S, Mendelsohn JB, et al.: An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS One. 2013; 8(9): e72311. PubMed Abstract | Publisher Full Text | Free Full Text 32. Ariyama J, Suyama M, Ogawa K, et al.: [Screening of pancreatic neoplasms and the diagnostic rate of small pancreatic neoplasms]. Nihon Rinsho. 1986; 44(8): 1729-34. PubMed Abstract 33. Locker GY, Hamilton S, Harris J, et al.: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006; 24(33): 5313-27. PubMed Abstract | Publisher Full Text 34. Bonney GK, Craven RA, Prasad R, et al.: Circulating markers of biliary malignancy: opportunities in proteomics? Lancet Oncol. 2008; 9(2): 149-58. PubMed Abstract | Publisher Full Text 35. Hotakainen K, Tanner P, Alfthan H, et al.: Comparison of three immunoassays for CA 19-9. Clin Chim Acta. 2009; 400(1-2): 123-7. PubMed Abstract | Publisher Full Text 36. Abi-Rached B, Neugut AI: Diagnostic and management issues in gallbladder carcinoma. Oncology (Williston Park). 1995; 9(1): 19-24; discussion 24, 27, 30. PubMed Abstract 37. Lazaridis KN, Gores GJ: Primary sclerosing cholangitis and cholangiocarcinoma. Semin Liver Dis. 2006; 26(1): 42-51. PubMed Abstract | Publisher Full Text 38. Khan SA, Davidson BR, Goldin RD, et al.: Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012; 61(12): 1657-69. PubMed Abstract | Publisher Full Text 39. Agarwal B, Correa AM, Ho L: Survival in pancreatic carcinoma based on tumor size. Pancreas. 2008; 36(1): e15-20. PubMed Abstract | Publisher Full Text 40. Malgerud L, Lindberg J, Wirta V, et al.: Bioinformatory-assisted analysis of next-generation sequencing data for precision medicine in pancreatic cancer. Mol Oncol. 2017. PubMed Abstract | Publisher Full Text | F1000 Recommendation 41. Lindahl A, Heuchel R, Forshed J, et al.: Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics. Metabolomics. 2017; 13(5): 61. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 42. Metzger J, Negm AA, Plentz RR, et al.: Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2013; 62(1): 122-30. PubMed Abstract | Publisher Full Text | F1000 Recommendation 43. Radon TP, Massat NJ, Jones R, et al.: Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. Clin Cancer Res. 2015; 21(15): 3512-21. PubMed Abstract | Publisher Full Text | Free Full Text 44. Holly EA, Chaliha I, Bracci PM, et al.: Signs and symptoms of pancreatic cancer: a population-based case-control study in the San Francisco Bay area. Clin Gastroenterol Hepatol. 2004; 2(6): 510-7. PubMed Abstract | Publisher Full Text 45. Keane MG, Bramis K, Pereira SP, et al.: Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol. 2014; 20(9): 2267-78. PubMed Abstract | Publisher Full Text | Free Full Text 46. Keane MG, Horsfall L, Rait G, et al.: A case-control study comparing the incidence of early symptoms in pancreatic and biliary tract cancer. BMJ Open. 2014; 4(11): e005720. PubMed Abstract | Publisher Full Text | Free Full Text 47. Macmillan: Early diagnosis programme. 2014; (accessed 15th May 2014). Reference Source 48. Dumonceau JM, Polkowski M, Larghi A, et al.: Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy. 2011; 43(10): 897-912. PubMed Abstract | Publisher Full Text 49. Jenssen C, Hocke M, Fusaroli P, et al.: EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV -EUS-guided interventions: General Aspects and EUS-guided Sampling (Short Version). Ultraschall Med. 2016; 37(2): 157-69. PubMed Abstract | Publisher Full Text | F1000 Recommendation 50. Mohamadnejad M, DeWitt JM, Sherman S, et al.: Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest Endosc. 2011; 73(1): 71-8. PubMed Abstract | Publisher Full Text | F1000 Recommendation 51. Fuccio L, Hassan C, Laterza L, et al.: The role of K-ras gene mutation analysis in EUS-guided FNA cytology specimens for the differential diagnosis of pancreatic solid masses: a meta-analysis of prospective studies. Gastrointest Endosc. 2013; 78(4): 596-608. PubMed Abstract | Publisher Full Text 52. Wang J, Wu X, Yin P, et al.: Comparing endoscopic ultrasound (EUS)guided fine needle aspiration (FNA) versus fine needle biopsy (FNB) in the diagnosis of solid lesions: study protocol for a randomized controlled trial. Trials. 2016; 17: 198. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 53. Klapman JB, Logrono R, Dye CE, et al.: Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol. 2003; 98(6): 1289-94. PubMed Abstract | Publisher Full Text 54. van Riet PA, Cahen DL, Poley JW, et al.: Mapping international practice patterns in EUS-guided tissue sampling: outcome of a global survey. Endosc Int Open. 2016; 4(3): E360-70. PubMed Abstract | Publisher Full Text | Free Full Text 55. Wani S, Mullady D, Early DS, et al.: The clinical impact of immediate on-site cytopathology evaluation during endoscopic ultrasound-guided fine needle aspiration of pancreatic masses: a prospective multicenter randomized controlled trial. Am J Gastroenterol. 2015; 110(10): 1429-39. PubMed Abstract | Publisher Full Text 56. Dawwas MF, Taha H, Leeds JS, et al.: Diagnostic accuracy of quantitative EUS elastography for discriminating malignant from benign solid pancreatic masses: a prospective, single-center study. Gastrointest Endosc. 2012; 76(5): 953-61. PubMed Abstract | Publisher Full Text 57. Soares JB, Iglesias-Garcia J, Goncalves B, et al.: Interobserver agreement of EUS elastography in the evaluation of solid pancreatic lesions. Endosc Ultrasound. 2015; 4(3): 244-9. PubMed Abstract | Publisher Full Text | Free Full Text 58. Fusaroli P, Kypraios D, Mancino MG, et al.: Interobserver agreement in contrast harmonic endoscopic ultrasound. J Gastroenterol Hepatol. 2012; 27(6): 1063-9. PubMed Abstract | Publisher Full Text 59. Iglesias-Garcia J, Lindkvist B, Lariño-Noia J, et al.: Differential diagnosis of solid pancreatic masses: contrast-enhanced harmonic (CEH-EUS), quantitative-elastography (QE-EUS), or both? United European Gastroenterol J. 2017; 5(2): 236-46. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 60. Dietrich CF: Contrast-enhanced low mechanical index endoscopic ultrasound (CELMI-EUS). Endoscopy. 2009; 41(Suppl 2): E43-4. PubMed Abstract | Publisher Full Text 61. Dietrich CF, Braden B, Hocke M, et al.: Improved characterisation of solitary solid pancreatic tumours using contrast enhanced transabdominal ultrasound. J Cancer Res Clin Oncol. 2008; 134(6): 635-43. PubMed Abstract | Publisher Full Text Dietrich CF, Dong Y, Froehlich E, et al.: Dynamic contrast-enhanced endoscopic ultrasound: A quantification method. Endosc Ultrasound. 2017; 6(1): 12-20. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 63. Fusaroli P, Kypreos D, Alma Petrini CA, et al.: Scientific publications in endoscopic ultrasonography: changing trends in the third millennium. J Clin Gastroenterol. 2011; 45(5): 400-4. PubMed Abstract | Publisher Full Text 64. Giovannini M, Thomas B, Erwan B, et al.: Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol. 2009; 15(13): 1587-93. PubMed Abstract | Free Full Text 65. Karstensen J, Cartana T, Pia K, et al.: Endoscopic ultrasound-guided needle confocal laser endomicroscopy in pancreatic masses. Endosc Ultrasound. 2014; 3(Suppl 1): S2-3. PubMed Abstract | Free Full Text 66. de Bellis M, Sherman S, Fogel EL, et al.: Tissue sampling at ERCP in suspected malignant biliary strictures (Part 2). Gastrointest Endosc. 2002; 56(5): 720-30. PubMed Abstract 67. Baron TH, Harewood GC, Rumalla A, et al.: A prospective comparison of digital image analysis and routine cytology for the identification of malignancy in biliary tract strictures. Clin Gastroenterol Hepatol. 2004; 2(3): 214-9. PubMed Abstract | Publisher Full Text 68. Bergquist A, Tribukait B, Glaumann H, et al.: Can DNA cytometry be used for evaluation of malignancy and premalignancy in bile duct strictures in primary sclerosing cholangitis? J Hepatol. 2000; 33(6): 873-7. PubMed Abstract | Publisher Full Text 69. Bangarulingam SY, Bjornsson E, Enders F, et al.: Long-term outcomes of positive fluorescence in situ hybridization tests in primary sclerosing cholangitis. Hepatology. 2010; 51(1): 174-80. PubMed Abstract | Publisher Full Text | F1000 Recommendation 70. Tischendorf JJ, Krüger M, Trautwein C, et al.: Cholangioscopic characterization of dominant bile duct stenoses in patients with primary sclerosing cholangitis. Endoscopy. 2006; 38(7): 665-9. PubMed Abstract | Publisher Full Text 71. Navaneethan U, Hasan MK, Lourdusamy V, et al.: Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc. 2015; 82(4): 608-14.e2. PubMed Abstract | Publisher Full Text | Free Full Text 72. Chen YK, Parsi MA, Binmoeller KF, et al.: Single-operator cholangioscopy in patients requiring evaluation of bile duct disease or therapy of biliary stones (with videos). Gastrointest Endosc. 2011; 74(4): 805-14. PubMed Abstract | Publisher Full Text 73. Larghi A, Waxman I: Endoscopic direct cholangioscopy by using an ultra-slim upper endoscope: a feasibility study. Gastrointest Endosc. 2006; 63(6): 853-7. PubMed Abstract | Publisher Full Text | F1000 Recommendation 74. Hoffman A, Kiesslich R, Bittinger F, et al.: Methylene blue-aided cholangioscopy in patients with biliary strictures: feasibility and outcome analysis. Endoscopy. 2008; 40(7): 563-71. PubMed Abstract | Publisher Full Text 75. Hoffman A, Kiesslich R, Moench C, et al.: Methylene blue-aided cholangioscopy unravels the endoscopic features of ischemic-type biliary lesions after liver transplantation. Gastrointest Endosc. 2007; 66(5): 1052-8. PubMed Abstract | Publisher Full Text 76. Itoi T, Sofuni A, Itokawa F, et al.: Peroral cholangioscopic diagnosis of biliarytract diseases by using narrow-band imaging (with videos). Gastrointest Endosc. 2007; 66(4): 730-6. PubMed Abstract | Publisher Full Text 77. Lu X, Itoi T, Kubota K: Cholangioscopy by using narrow-band imaging and transpapillary radiotherapy for mucin-producing bile duct tumor. Clin Gastroenterol Hepatol. 2009; 7(6): e34-5. PubMed Abstract | Publisher Full Text 78. Itoi T, Neuhaus H, Chen YK: Diagnostic value of image-enhanced video cholangiopancreatoscopy. Gastrointest Endosc Clin N Am. 2009; 19(4): 557-66. PubMed Abstract | Publisher Full Text 79. Meining A, Frimberger E, Becker V, et al.: Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy. Clin Gastroenterol Hepatol. 2008; 6(9): 1057-60. PubMed Abstract | Publisher Full Text 80. Giovannini M, Bories E, Monges G, et al.: Results of a phase I-II study on intraductal confocal microscopy (IDCM) in patients with common bile duct (CBD) stenosis. Surg Endosc. 2011; 25(7): 2247-53. PubMed Abstract | Publisher Full Text 81. Slivka A, Gan I, Jamidar P, et al.: Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy for the characterization of indeterminate biliary strictures: results of a prospective multicenter international study. Gastrointest Endosc. 2015; 81(2): 282-90. PubMed Abstract | Publisher Full Text 82. Meining A, Phillip V, Gaa J, et al.: Pancreaticoscopy with miniprobe-based confocal laser-scanning microscopy of an intraductal papillary mucinous neoplasm (with video). Gastrointest Endosc. 2009; 69(6): 1178-80. PubMed Abstract | Publisher Full Text 83. Menzel J, Poremba C, Dietl KH, et al.: Preoperative diagnosis of bile duct strictures--comparison of intraductal ultrasonography with conventional endosonography. Scand J Gastroenterol. 2000; 35(1): 77-82. PubMed Abstract | Publisher Full Text | F1000 Recommendation 84. Han Y, Zhang W, Liu Y: Identification of hepatoma-derived growth factor as a potential prognostic and diagnostic marker for extrahepatic cholangiocarcinoma. World J Surg. 2013; 37(10): 2419-27. PubMed Abstract | Publisher Full Text 85. Ruzzenente A, Iacono C, Conci S, et al.: A novel serum marker for biliary tract cancer: diagnostic and prognostic values of quantitative evaluation of serum mucin 5AC (MUC5AC). Surgery. 2014; 155(4): 633-9. PubMed Abstract | Publisher Full Text 86. Voigtländer T, David S, Thamm K, et al.: Angiopoietin-2 and biliary diseases: elevated serum, but not bile levels are associated with cholangiocarcinoma. PLoS One. 2014; 9(5): e97046. PubMed Abstract | Publisher Full Text | Free Full Text 87. Lumachi F, Lo Re G, Tozzoli R, et al.: Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19-9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary casecontrol study. Anticancer Res. 2014; 34(11): 6663-7. PubMed Abstract 88. Wang YF, Feng FL, Zhao XH, et al.: Combined detection tumor markers for diagnosis and prognosis of gallbladder cancer. World J Gastroenterol. 2014; 20(14): 4085-92. PubMed Abstract | Publisher Full Text | Free Full Text 89. Liu MC, Jiang L, Hong HJ, et al.: Serum vascular endothelial growth factors C and D as forecast tools for patients with gallbladder carcinoma. Tumour Biol. 2015; 36(8): 6305-12. PubMed Abstract | Publisher Full Text | Free Full Text 90. Huang L, Chen W, Liang P, et al.: Serum CYFRA 21-1 in Biliary Tract Cancers: A Reliable Biomarker for Gallbladder Carcinoma and Intrahepatic Cholangiocarcinoma. Dig Dis Sci. 2015; 60(5): 1273-83. PubMed Abstract | Publisher Full Text 91. Nigam J, Chandra A, Kazmi HR, et al.: Expression of serum survivin protein in diagnosis and prognosis of gallbladder cancer: a comparative study. Med Oncol. 2014; 31(9): 167. PubMed Abstract | Publisher Full Text 92. Rucksaken R, Pairojkul C, Pinlaor P, et al.: Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One. 2014; 9(7): e103259. PubMed Abstract | Publisher Full Text | Free Full Text 93. Ince AT, Yildiz K, Baysal B, et al.: Roles of serum and biliary CEA, CA19-9, VEGFR3, and TAC in differentiating between malignant and benign biliary obstructions. Turk J Gastroenterol. 2014; 25(2): 162-9. PubMed Abstract | Publisher Full Text 94. Rucksaken R, Charoensuk L, Pinlaor P, et al.: Plasma orosomucoid 2 as a potential risk marker of cholangiocarcinoma. Cancer Biomark. 2017; 18(1): 27-34. PubMed Abstract | Publisher Full Text | F1000 Recommendation 95. Rose JB, Correa-Gallego C, Li Y, et al.: The Role of Biliary Carcinoembryonic Antigen-Related Cellular Adhesion Molecule 6 (CEACAM6) as a Biomarker in Cholangiocarcinoma. PLoS One. 2016; 11(3): e0150195. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 96. Jiao X, Mo Y, Wu Y, et al.: Upregulated plasma and urinary levels of nucleosides as biological markers in the diagnosis of primary gallbladder cancer. J Sep Sci. 2014; 37(21): 3033-44. PubMed Abstract | Publisher Full Text 97. Sogawa K, Takano S, Iida F, et al.: Identification of a novel serum biomarker for pancreatic cancer, C4b-binding protein α-chain (C4BPA) by quantitative proteomic analysis using tandem mass tags. Br J Cancer. 2016; 115(8): 949-56. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 98. Rychlíková J, Vecka M, Jáchymová M: Osteopontin as a discriminating marker for pancreatic cancer and chronic pancreatitis. Cancer Biomark. 2016; 17(1): 55-65. PubMed Abstract | Publisher Full Text 99. Lin C, Wu WC, Zhao GC, et al.: ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma. Medicine (Baltimore). 2016; 95(31): e4527. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 100. Guo X, Lv X, Fang C, et al.: Dysbindin as a novel biomarker for pancreatic ductal adenocarcinoma identified by proteomic profiling. Int J Cancer. 2016; 139(8): 1821-9. PubMed Abstract | Publisher Full Text | F1000 Recommendation 101. Han SX, Zhou X, Sui X, et al.: Serum dickkopf-1 is a novel serological biomarker for the diagnosis and prognosis of pancreatic cancer. Oncotarget. 2015; 6(23): 19907-17. PubMed Abstract | Publisher Full Text | Free Full Text 102. Qu D, Johnson J, Chandrakesan P, et al.: Doublecortin-like kinase 1 is elevated serologically in pancreatic ductal adenocarcinoma and widely expressed on circulating tumor cells. PLoS One. 2015; 10(2): e0118933. PubMed Abstract | Publisher Full Text | Free Full Text Page 14 of 17 F1000Research 2017, 6(F1000 Faculty Rev):1643 Last updated: 17 JUL 2019 103. Dong H, Qian D, Wang Y, et al.: Survivin expression and serum levels in pancreatic cancer. World J Surg Oncol. 2015; 13: 189. PubMed Abstract | Publisher Full Text | Free Full Text 104. Gebauer F, Struck L, Tachezy M, et al.: Serum EpCAM expression in pancreatic cancer. Anticancer Res. 2014; 34(9): 4741-6. PubMed Abstract 105. Wang X, Li Y, Tian H, et al.: Macrophage inhibitory cytokine 1 (MIC-1/GDF15) as a novel diagnostic serum biomarker in pancreatic ductal adenocarcinoma. BMC Cancer. 2014; 14: 578. PubMed Abstract | Publisher Full Text | Free Full Text 106. Kendrick ZW, Firpo MA, Repko RC, et al.: Serum IGFBP2 and MSLN as diagnostic and prognostic biomarkers for pancreatic cancer. HPB (Oxford). 2014; 16(7): 670-6. PubMed Abstract | Publisher Full Text | Free Full Text 107. Kang CY, Wang J, Axell-House D, et al.: Clinical significance of serum COL6A3 in pancreatic ductal adenocarcinoma. J Gastrointest Surg. 2014; 18(1): 7-15. PubMed Abstract | Publisher Full Text 108. Willumsen N, Bager CL, Leeming DJ, et al.: Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls. BMC Cancer. 2013; 13: 554. PubMed Abstract | Publisher Full Text | Free Full Text 109. Falco A, Rosati A, Festa M, et al.: BAG3 is a novel serum biomarker for pancreatic adenocarcinomas. Am J Gastroenterol. 2013; 108(7): 1178-80. PubMed Abstract | Publisher Full Text 110. Chen J, Chen LJ, Xia YL, et al.: Identification and verification of transthyretin as a potential biomarker for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol. 2013; 139(7): 1117-27. PubMed Abstract | Publisher Full Text 111. Gold DV, Gaedcke J, Ghadimi BM, et al.: PAM4 enzyme immunoassay alone and in combination with CA 19-9 for the detection of pancreatic adenocarcinoma. Cancer. 2013; 119(3): 522-8. PubMed Abstract | Publisher Full Text | Free Full Text 112. Poruk KE, Firpo MA, Scaife CL, et al.: Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas. 2013; 42(2): 193-7. PubMed Abstract | Publisher Full Text | Free Full Text 113. Lee MJ, Na K, Jeong SK, et al.: Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma. J Proteome Res. 2014; 13(11): 4878-88. PubMed Abstract | Publisher Full Text 114. Abdel-Razik A, ElMahdy Y, Hanafy EE, et al.: Insulin-Like Growth Factor-1 and Vascular Endothelial Growth Factor in Malignant and Benign Biliary Obstructions. Am J Med Sci. 2016; 351(3): 259-64. PubMed Abstract | Publisher Full Text | F1000 Recommendation 115. Makawita S, Dimitromanolakis A, Soosaipillai A, et al.: Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9. BMC Cancer. 2013; 13: 404. PubMed Abstract | Publisher Full Text | Free Full Text 116. Shaw VE, Lane B, Jenkinson C, et al.: Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer. 2014; 13: 114. PubMed Abstract | Publisher Full Text | Free Full Text 117. Brand RE, Nolen BM, Zeh HJ, et al.: Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res. 2011; 17(4): 805-16. PubMed Abstract | Publisher Full Text | Free Full Text 118. Capello M, Bantis LE, Scelo G, et al.: Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer. J Natl Cancer Inst. 2017; 109(4): djw266. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 119. Chan A, Prassas I, Dimitromanolakis A, et al.: Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. Clin Cancer Res. 2014; 20(22): 5787-95. PubMed Abstract | Publisher Full Text | Free Full Text 120. Ankeny JS, Court CM, Hou S, et al.: Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer. 2016; 114(12): 1367-75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 121. Kulemann B, Liss AS, Warshaw AL, et al.: KRAS mutations in pancreatic circulating tumor cells: a pilot study. Tumour Biol. 2016; 37(6): 7547-54. PubMed Abstract | Publisher Full Text | F1000 Recommendation 122. Singh N, Gupta S, Pandey RM, et al.: High levels of cell-free circulating nucleic acids in pancreatic cancer are associated with vascular encasement, metastasis and poor survival. Cancer Invest. 2015; 33(3): 78-85. PubMed Abstract | Publisher Full Text 123. Kinugasa H, Nouso K, Miyahara K, et al.: Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015; 121(13): 2271-80. PubMed Abstract | Publisher Full Text 124. Takai E, Totoki Y, Nakamura H, et al.: Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015; 5: 18425. PubMed Abstract | Publisher Full Text | Free Full Text 125. Sausen M, Phallen J, Adleff V, et al.: Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015; 6: 7686. PubMed Abstract | Publisher Full Text | Free Full Text 126. Kulemann B, Pitman MB, Liss AS, et al.: Circulating tumor cells found in patients with localized and advanced pancreatic cancer. Pancreas. 2015; 44(4): 547-50. PubMed Abstract | Publisher Full Text 127. Zhang Y, Wang F, Ning N, et al.: Patterns of circulating tumor cells identified by CEP8, CK and CD45 in pancreatic cancer. Int J Cancer. 2015; 136(5): 1228-33. PubMed Abstract | Publisher Full Text PubMed Abstract | Publisher Full Text 133. Sheng W, Ogunwobi OO, Chen T, et al.: Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014; 14(1): 89-98. PubMed Abstract | Publisher Full Text | Free Full Text 134. Catenacci DV, Chapman CG, Xu P, et al.: Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology. 2015; 149(7): 1794-1803.e4. PubMed Abstract | Publisher Full Text | Free Full Text 135. Earl J, Garcia-Nieto S, Martinez-Avila JC, et al.: Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015; 15: 797. PubMed Abstract | Publisher Full Text | Free Full Text 136. Cauley CE, Pitman MB, Zhou J, et al.: Circulating Epithelial Cells in Patients with Pancreatic Lesions: Clinical and Pathologic Findings. J Am Coll Surg. 2015; 221(3): 699-707. PubMed Abstract | Publisher Full Text | Free Full Text 137. Kamande JW, Hupert ML, Witek MA, et al.: Modular microsystem for the isolation, enumeration, and phenotyping of circulating tumor cells in patients with pancreatic cancer. Anal Chem. 2013; 85(19): 9092-100. PubMed Abstract | Publisher Full Text | Free Full Text 138. Takai E, Totoki Y, Nakamura H, et al.: Clinical Utility of Circulating Tumor DNA for Molecular Assessment and Precision Medicine in Pancreatic Cancer. Adv Exp Med Biol. 2016; 924: 13-7. PubMed Abstract | Publisher Full Text | F1000 Recommendation 139. Hadano N, Murakami Y, Uemura K, et al.: Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016; 115(1): 59-65. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 140. Zill OA, Greene C, Sebisanovic D, et al.: Cell-Free DNA Next-Generation Sequencing in Pancreatobiliary Carcinomas. Cancer Discov. 2015; 5(10): 1040-8. PubMed Abstract | Publisher Full Text | Free Full Text 141. Kishimoto T, Eguchi H, Nagano H, et al.: Plasma miR-21 is a novel diagnostic biomarker for biliary tract cancer. Cancer Sci. 2013; 104(12): 1626-31. PubMed Abstract | Publisher Full Text 142. Wang WS, Liu LX, Li GP, et al.: Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. Cancer Prev Res (Phila). 2013; 6(4): 331-8. PubMed Abstract | Publisher Full Text 143. Kawaguchi T, Komatsu S, Ichikawa D, et al.: Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013; 108(2): 361-9. PubMed Abstract | Publisher Full Text | Free Full Text 144. Zhao C, Zhang J, Zhang S, et al.: Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep. 2013; 30(1): 276-84. PubMed Abstract | Publisher Full Text 145. Carlsen AL, Joergensen MT, Knudsen S, et al.: Cell-free plasma microRNA in pancreatic ductal adenocarcinoma and disease controls. Pancreas. 2013; 42(7): 1107-13. PubMed Abstract | Publisher Full Text clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013; 11: 219. PubMed Abstract | Publisher Full Text | Free Full Text 147. Schultz NA, Dehlendorff C, Jensen BV, et al.: MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014; 311(4): 392-404. PubMed Abstract | Publisher Full Text | F1000 Recommendation 148. Silakit R, Loilome W, Yongvanit P, et al.: Circulating miR-192 in liver flukeassociated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepatobiliary Pancreat Sci. 2014; 21(12): 864-72. PubMed Abstract | Publisher Full Text 149. Lin M, Chen W, Huang J, et al.: Aberrant expression of microRNAs in serum may identify individuals with pancreatic cancer. Int J Clin Exp Med. 2014; 7(12): 5226-34. PubMed Abstract | Free Full Text 150. Chen Q, Yang L, Xiao Y, et al.: Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Med Oncol. 2014; 31(11): 225. PubMed Abstract | Publisher Full Text 151. Wang S, Yin J, Li T, et al.: Upregulated circulating miR-150 is associated with the risk of intrahepatic cholangiocarcinoma. Oncol Rep. 2015; 33(2): 819-25. PubMed Abstract | Publisher Full Text 152. Ganepola GA, Rutledge JR, Suman P, et al.: Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J Gastrointest Oncol. 2014; 6(1): 22-33. PubMed Abstract | Publisher Full Text | Free Full Text 153. Voigtländer T, Gupta SK, Thum S, et al.: MicroRNAs in Serum and Bile of Patients with Primary Sclerosing Cholangitis and/or Cholangiocarcinoma. PLoS One. 2015; 10(10): e0139305. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 154. Abue M, Yokoyama M, Shibuya R, et al.: Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol. 2015; 46(2): 539-47. PubMed Abstract | Publisher Full Text | Free Full Text 155. Slater EP, Strauch K, Rospleszcz S, et al.: MicroRNA-196a and -196b as Potential Biomarkers for the Early Detection of Familial Pancreatic Cancer. Transl Oncol. 2014; 7(4): 464-71. PubMed Abstract | Publisher Full Text | Free Full Text 156. Kojima M, Sudo H, Kawauchi J, et al.: MicroRNA markers for the diagnosis of pancreatic and biliary-tract cancers. PLoS One. 2015; 10(2): e0118220. PubMed Abstract | Publisher Full Text | Free Full Text 157. Xu J, Cao Z, Liu W, et al.: Plasma miRNAs Effectively Distinguish Patients With Pancreatic Cancer From Controls: A Multicenter Study. Ann Surg. 2016; 263(6): 1173-9. PubMed Abstract | Publisher Full Text | F1000 Recommendation 158. Madhavan B, Yue S, Galli U, et al.: Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015; 136(11): 2616-27. PubMed Abstract | Publisher Full Text PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 166. Dhar DK, Olde Damink SW, Brindley JH, et al.: Pyruvate kinase M2 is a novel diagnostic marker and predicts tumor progression in human biliary tract cancer. Cancer. 2013; 119(3): 575-85. PubMed Abstract | Publisher Full Text | Free Full Text 167. Navaneethan U, Lourdusamy V, Poptic E, et al.: Comparative effectiveness of pyruvate kinase M2 in bile, serum carbohydrate antigen 19-9, and biliary brushings in diagnosing malignant biliary strictures. Dig Dis Sci. 2015; 60(4): 903-9. PubMed Abstract | Publisher Full Text 168. Keane MG, Huggett MT, Chapman MH, et al.: Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in biliary brush cytology. Br J Cancer. 2017; 116(3): 349-55. PubMed Abstract | Publisher Full Text | Free Full Text 169. Danese E, Ruzzenente O, Ruzzenente A, et al.: Assessment of bile and serum mucin5AC in cholangiocarcinoma: diagnostic performance and biologic significance. Surgery. 2014; 156(5): 1218-24. PubMed Abstract | Publisher Full Text 170. Farina A, Dumonceau JM, Antinori P, et al.: Bile carcinoembryonic cell adhesion molecule 6 (CEAM6) as a biomarker of malignant biliary stenoses. Biochim Biophys Acta. 2014; 1844(5): 1018-25. PubMed Abstract | Publisher Full Text 171. Budzynska A, Nowakowska-Dulawa E, Marek T, et al.: Differentiation of pancreatobiliary cancer from benign biliary strictures using neutrophil gelatinase-associated lipocalin. J Physiol Pharmacol. 2013; 64(1): 109-14. PubMed Abstract 172. Roy R, Zurakowski D, Wischhusen J, et al.: Urinary TIMP-1 and MMP-2 levels detect the presence of pancreatic malignancies. Br J Cancer. 2014; 111(9): 1772-9. PubMed Abstract | Publisher Full Text | Free Full Text
doi:10.12688/f1000research.11371.1 pmid:28944047 pmcid:PMC5585877 fatcat:4hvmjia4zjfknoh64cclt2ex2m