Mobility driven Cloud-Fog-Edge Framework for Location-aware Services: A Comprehensive Review [article]

Shreya Ghosh, Soumya Ghosh
2020 arXiv   pre-print
With the pervasiveness of IoT devices, smart-phones and improvement of location-tracking technologies huge volume of heterogeneous geo-tagged (location specific) data is generated which facilitates several location-aware services. The analytics with this spatio-temporal (having location and time dimensions) datasets provide varied important services such as, smart transportation, emergency services (health-care, national defence or urban planning). While cloud paradigm is suitable for the
more » ... lity of storage and computation, the major bottleneck is network connectivity loss. In time-critical application, where real-time response is required for emergency service-provisioning, such connectivity issues increases the latency and thus affects the overall quality of system (QoS). To overcome the issue, fog/ edge topology has emerged, where partial computation is carried out in the edge of the network to reduce the delay in communication. Such fog/ edge based system complements the cloud technology and extends the features of the system. This chapter discusses cloud-fog-edge based hierarchical collaborative framework, where several components are deployed to improve the QoS. On the other side. mobility is another critical factor to enhance the efficacy of such location-aware service provisioning. Therefore, this chapter discusses the concerns and challenges associated with mobility-driven cloud-fog-edge based framework to provide several location-aware services to the end-users efficiently.
arXiv:2007.04193v1 fatcat:ghxpcgofpraxfhosirzfa7bzhi