A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Robust Federated Recommendation System
[article]
2020
arXiv
pre-print
Federated recommendation systems can provide good performance without collecting users' private data, making them attractive. However, they are susceptible to low-cost poisoning attacks that can degrade their performance. In this paper, we develop a novel federated recommendation technique that is robust against the poisoning attack where Byzantine clients prevail. We argue that the key to Byzantine detection is monitoring of gradients of the model parameters of clients. We then propose a
arXiv:2006.08259v1
fatcat:boav3q2s5zgv5o3u5v5sxya6ti