Quali-Mat

Bo Zhou, Sungho Suh, Vitor Fortes Rey, Carlos Andres Velez Altamirano, Paul Lukowicz
2022 Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies  
While sports activity recognition is a well studied subject in mobile, wearable and ubiquitous computing, work to date mostly focuses on recognition and counting of specific exercise types. Quality assessment is a much more difficult problem with significantly less published results. In this work, we present Quali-Mat: a method for evaluating the quality of execution (QoE) in exercises using a smart sports mat that can measure the dynamic pressure profiles during full-body, body-weight
more » ... . As an example, our system not only recognizes that the user is doing push-ups, but also distinguishes 5 subtly different types of push-ups, each of which (according to sports science literature and professional trainers) has a different effect on different muscle groups. We have investigated various machine learning algorithms targeting the specific type of spatio-temporal data produced by the pressure mat system. We demonstrate that computationally efficient, yet effective Conv3D model outperforms more complex state-of-the-art options such as transfer learning from the image domain. The approach is validated through an experiment designed to cover 47 quantifiable variants of 9 basic exercises with 12 participants. Overall, the model can categorize 9 exercises with 98.6% accuracy / 98.6% F1 score, and 47 QoE variants with 67.3% accuracy / 68.1% F1 score. Through extensive discussions with both the experiment results and practical sports considerations, our approach can be used for not only precisely recognizing the type of exercises, but also quantifying the workout quality of execution on a fine time granularity. We also make the Quali-Mat data set available to the community to encourage further research in the area.
doi:10.1145/3534610 fatcat:gqh462pk4bdarexywdqdkilwae