A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Increasing the chromatic number of a random graph
2010
Journal of Combinatorics
What is the minimum number of edges that have to be added to the random graph G = G n,0.5 in order to increase its chromatic number χ = χ(G) by one percent ? One possibility is to add all missing edges on a set of 1.01χ vertices, thus creating a clique of chromatic number 1.01χ. This requires, with high probability, the addition of Ω(n 2 / log 2 n) edges. We show that this is tight up to a constant factor, consider the question for more general random graphs G n,p with p = p(n), and study a
doi:10.4310/joc.2010.v1.n4.a1
fatcat:wpcufocnirdhhpf3vzayk3ofde