Molecular Details of the Activation of the μ Opioid Receptor

Jihyun Shim, Andrew Coop, Alexander D. MacKerell
2013 Journal of Physical Chemistry B  
Molecular details of μ opioid receptor activations were obtained using molecular dynamics simulations of the receptor in the presence of 3 agonists, 3 antagonists, a partial agonist and on the constitutively active T279K mutant. Agonists have a higher probability of direct interactions of their basic nitrogen (N) with Asp147 as compared to antagonists, indicating that direct ligand-Asp147 interactions modulate activation. Medium size substituents on the basic N of antagonists lead to steric
more » ... ractions that perturb N-Asp147 interactions, while additional favorable interactions occur with larger basic N substituents, such as in N-phenethylnormorphine, restoring N-Asp147 interactions, leading to agonism. With the orvinols, the increased size of the C19 substituent in buprenorphine over diprenorphine leads increased interactions with residues adjacent to Asp147, partially overcoming the presence of the cyclopropyl N substituent, such that buprenorphine is a partial agonist. Results also indicate different conformational properties of the intracellular regions of the transmembrane helices in agonists versus antagonists.
doi:10.1021/jp404238n pmid:23758404 pmcid:PMC3735350 fatcat:zu7vgjo435a65c76wrevepylsy