Identification of New In Vivo TonB-FepA Rendezvous Sites
[article]
Kathleen Postle, Kelvin Kho, Michael Gresock, Joydeep Ghosh, Ray Larsen
2021
bioRxiv
pre-print
The TonB system of Gram-negative bacteria uses the protonmotive force of the cytoplasmic membrane to energize active transport of large or scarce nutrients across the outer membrane by means of customized beta-barrels known as TonB-dependent transporters (TBDTs). The lumen of each TBDT is occluded by an amino-terminal domain, called the cork, which must be displaced for transport of nutrients or translocation of the large protein toxins that parasitize the system. A complex of cytoplasmic
more »
... ne proteins consisting of TonB, ExbB and ExbD harnesses the protonmotive force that TonB transmits to the TBDT. The specifics of this energy transformation are a source of continuing interest. The amino terminal domain of a TBDT contains a region called the TonB box, that is essential for the reception of energy from TonB. This domain is the only identified site of in vivo interaction between the TBDT and TonB, occurring through a non-essential region centered on TonB residue Q160. Because TonB binds to TBDTs whether or not it is active or even intact, the mechanism and extent of cork movement in vivo has been challenging to discover. In this study, we used in vivo disulfide crosslinking between eight engineered Cys residues in Escherichia coli TonB and 42 Cys substitutions in the TBDT FepA, including the TonB box, to identify novel sites of interaction in vivo. The TonB Cys substitutions in the core of an essential carboxy terminal amphipathic helix (residues 199-216) were compared to TonB Q160C interactions. Functionality of the in vivo interactions was established when the presence of the inactive TonB H20A mutation inhibited them. A previously unknown functional interaction between the hydrophilic face of the amphipathic helix and the FepA TonB box was identified. Interaction of Q160C with the FepA TonB box appeared to be less functionally important. The two different parts of TonB also differed in their interactions with the FepA cork and barrel turns. While the TonB amphipathic helix Cys residues interacted only with Cys residues on the periplasmic face of the FepA cork, TonB Q160C interacted with buried Cys substitutions within the FepA cork, the first such interactions seen with any TBDT. Both sets of interactions required active TonB. Taken together, these data suggest a model where the amphipathic helix binds to the TonB box, causing the mechanically weak domain of the FepA cork to dip sufficiently into the periplasmic space for interaction with the TonB Q160 region, which is an interaction that does not occur if the TonB box is deleted. The TonB amphipathic helix also interacted with periplasmic turns between FepA β-strands in vivo supporting a surveillance mechanism where TonB searched for TBDTs on the periplasmic face of the outer membrane.
doi:10.1101/2021.12.08.471779
fatcat:srohyq7ljzgjha5pfvzu5m5a2m