Systematic Prediction of Pharmacodynamic Drug-Drug Interactions through Protein-Protein-Interaction Network

Jialiang Huang, Chaoqun Niu, Christopher D. Green, Lun Yang, Hongkang Mei, Jing-Dong J. Han, Robert B. Russell
<span title="2013-03-21">2013</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ch57atmlprauhhbqdf7x4ytejm" style="color: black;">PLoS Computational Biology</a> </i> &nbsp;
Identifying drug-drug interactions (DDIs) is a major challenge in drug development. Previous attempts have established formal approaches for pharmacokinetic (PK) DDIs, but there is not a feasible solution for pharmacodynamic (PD) DDIs because the endpoint is often a serious adverse event rather than a measurable change in drug concentration. Here, we developed a metric "S-score" that measures the strength of network connection between drug targets to predict PD DDIs. Utilizing known PD DDIs as
more &raquo; ... olden standard positives (GSPs), we observed a significant correlation between S-score and the likelihood a PD DDI occurs. Our prediction was robust and surpassed existing methods as validated by two independent GSPs. Analysis of clinical side effect data suggested that the drugs having predicted DDIs have similar side effects. We further incorporated this clinical side effects evidence with S-score to increase the prediction specificity and sensitivity through a Bayesian probabilistic model. We have predicted 9,626 potential PD DDIs at the accuracy of 82% and the recall of 62%. Importantly, our algorithm provided opportunities for better understanding the potential molecular mechanisms or physiological effects underlying DDIs, as illustrated by the case studies.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pcbi.1002998">doi:10.1371/journal.pcbi.1002998</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/23555229">pmid:23555229</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3605053/">pmcid:PMC3605053</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ivzny2smiba2vcr64mpxj2csga">fatcat:ivzny2smiba2vcr64mpxj2csga</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190506055633/https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002998&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/65/7a/657a08ec40b58064031d15f48f0588d5083e2ea1.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pcbi.1002998"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605053" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>