Visual cluster analysis of trajectory data with interactive Kohonen Maps

Tobias Schreck, Jurgen Bernard, Tatiana Tekusova, Jorn Kohlhammer
2008 2008 IEEE Symposium on Visual Analytics Science and Technology  
Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Due to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map, or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps
more » ... uster layouts) may emerge that do not comply with user preferences, expectations, or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on a trajectory clustering problem, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.
doi:10.1109/vast.2008.4677350 dblp:conf/ieeevast/SchreckBTK08 fatcat:3r77tfkairbercxdmd654hhy5e