Finiteness conditions for graph algebras over tropical semirings [article]

Nadia Labai, Johann A. Makowsky
2014 arXiv   pre-print
Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lovász and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies
more » ... at these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption.
arXiv:1405.2547v1 fatcat:lwavwoju6vh3tntf5djxkrqu7u