Deep Weakly-supervised Anomaly Detection [article]

Guansong Pang, Chunhua Shen, Huidong Jin, Anton van den Hengel
2020 arXiv   pre-print
Anomaly detection is typically posited as an unsupervised learning task in the literature due to the prohibitive cost and difficulty to obtain large-scale labeled anomaly data, but this ignores the fact that a very small number (e.g." a few dozens) of labeled anomalies can often be made available with small/trivial cost in many real-world anomaly detection applications. To leverage such labeled anomaly data, we study an important anomaly detection problem termed weakly-supervised anomaly
more » ... on, in which, in addition to a large amount of unlabeled data, a limited number of labeled anomalies are available during modeling. Learning with the small labeled anomaly data enables anomaly-informed modeling, which helps identify anomalies of interest and address the notorious high false positives in unsupervised anomaly detection. However, the problem is especially challenging, since (i) the limited amount of labeled anomaly data often, if not always, cannot cover all types of anomalies and (ii) the unlabeled data is often dominated by normal instances but has anomaly contamination. We address the problem by formulating it as a pairwise relation prediction task. Particularly, our approach defines a two-stream ordinal regression neural network to learn the relation of randomly sampled instance pairs, i.e., whether the instance pair contains two labeled anomalies, one labeled anomaly, or just unlabeled data instances. The resulting model effectively leverages both the labeled and unlabeled data to substantially augment the training data and learn well-generalized representations of normality and abnormality. Comprehensive empirical results on 40 real-world datasets show that our approach (i) significantly outperforms four state-of-the-art methods in detecting both of the known and previously unseen anomalies and (ii) is substantially more data-efficient.
arXiv:1910.13601v3 fatcat:uwvyxx6l7vckdjrsjnnvjfvy54