A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques
2011
Journal of High Energy Physics
We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of ~ 10^4 with
doi:10.1007/jhep03(2011)012
fatcat:fo35j4ldfrbelhi5vpxcqcmniy