Magnetic Equivalent Circuit Modeling of Induction Motors

Scott D. Sudhoff, Brian T. Kuhn, Keith A. Corzine, Brian T. Branecky
2007 IEEE transactions on energy conversion  
Finite element models are invaluable for determining expected machine performance. However, finite element analysis can be computationally intense; particularly if a large numbers of studies or high bandwidth studies are required. One method to avoid this difficulty is to extract machine parameters from the finite element model and use the parameters in lumped parameter models. While often useful, such an approach does not represent space harmonics or asymmetries in the motor. A methodology for
more » ... . A methodology for constructing a state-variable model, based on a magnetic equivalent circuit of the motor is described herein. In addition, the parameters for this model are based solely on geometrical data. This approach is an excellent compromise between the speed of lumped parameter models and the ability of finite element methods to capture spatial effects. Experimental validation of the model is provided. Index Terms-Geometry-based modeling, induction machine modeling, magnetic equivalent circuit (MEC), space harmonics.
doi:10.1109/tec.2006.875471 fatcat:owviwdjcufgxjmm4arfqjplzqy