Steganographer Identification [article]

Hanzhou Wu
2019 arXiv   pre-print
Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of
more » ... alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.
arXiv:1904.07554v1 fatcat:zmwhacbfkzh4hdgld4h6lgxt6q