Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease

Jewell B. Thomas, Matthew R. Brier, Randall J. Bateman, Abraham Z. Snyder, Tammie L. Benzinger, Chengjie Xiong, Marcus Raichle, David M. Holtzman, Reisa A. Sperling, Richard Mayeux, Bernardino Ghetti, John M. Ringman (+26 others)
2014 JAMA Neurology  
Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional
more » ... ctivity magnetic resonance imaging at multiple international academic sites. For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.
doi:10.1001/jamaneurol.2014.1654 pmid:25069482 pmcid:PMC4240274 fatcat:hfb542cyxfbqxjtdm3tbwrwgg4