Iterative Pre-Conditioning to Expedite the Gradient-Descent Method [article]

Kushal Chakrabarti, Nirupam Gupta, Nikhil Chopra
2020 arXiv   pre-print
This paper considers the problem of multi-agent distributed optimization. In this problem, there are multiple agents in the system, and each agent only knows its local cost function. The objective for the agents is to collectively compute a common minimum of the aggregate of all their local cost functions. In principle, this problem is solvable using a distributed variant of the traditional gradient-descent method, which is an iterative method. However, the speed of convergence of the
more » ... l gradient-descent method is highly influenced by the conditioning of the optimization problem being solved. Specifically, the method requires a large number of iterations to converge to a solution if the optimization problem is ill-conditioned. In this paper, we propose an iterative pre-conditioning approach that can significantly attenuate the influence of the problem's conditioning on the convergence-speed of the gradient-descent method. The proposed pre-conditioning approach can be easily implemented in distributed systems and has minimal computation and communication overhead. For now, we only consider a specific distributed optimization problem wherein the individual local cost functions of the agents are quadratic. Besides the theoretical guarantees, the improved convergence speed of our approach is demonstrated through experiments on a real data-set.
arXiv:2003.07180v2 fatcat:kgt46uwwujcghmrz7osfanxwgm