Benchmarking von Verhaltens-Algorithmen für die Applikation in Motorsport-Szenarien

Marco Sippel
2022
Im Zuge der Entwicklung des autonomen Fahrens existieren Bemühungen, den Motorsport als Technologie-Treiber und Showcase in diese Entwicklung mit einzubinden. Die Herausforderungen, die der Motorsport für die autonome Fahrt präsentiert, sind vielfältig und beinhalten neben der Wahrnehmung der Umwelt bei hohen Geschwindigkeiten auch die Regelung des Fahrzeugs und die Trajektorienplanung. Während die Trajektorienplanung für ein einzelnes Fahrzeug eine von vielen Autoren untersuchte Aufgabe ist,
more » ... istieren für die Verhaltensplanung der Interaktion von mehreren Fahrzeugen bislang nur wenige Ansätze. Diese Ansätze basieren häufig auf unterschiedlichen Prinzipien und Fahrzeugmodellen. Somit ist die Evaluation häufig zwar nachvollziehbar, aber nicht auf andere Methoden extrapolierbar. Diese Arbeit startet daher mit der initialen Frage, wie und unter welchen Bedingungen möglich ist, verschiedene Algorithmen, die Verhalten für autonome Rennfahrzeugen erzeugen, miteinander zu vergleichen. Die Analyse des Stands der Forschung offenbart, dass bisherige Ansätze für den Vergleich bislang häufig auf Reward-Funktionen aus dem Bereich des maschinellen Lernens zurückgreifen oder Metriken für die Evaluation nutzen, deren Relevanz für das betrachtete Szenario nicht genauer untersucht wird. Bestehende Ranking-Verfahren bieten die Möglichkeit, große Zahlen an menschlichen Spielern in eine Rangfolge zu bringen. Für Computeralgorithmen existieren dagegen aufgrund von Überlegenheiten nach dem Schere-Stein-Papier-Prinzip unterschiedlicher Strategien nur Methoden für kleine Anzahlen an Spielern. Auf Basis der Analyse von Benchmarkings und den im Motorsport verfolgten Zielen werden die Randbedingungen für ein Szenario anhand der Szenario-Definition von Ulbricht et al. mit Bezug auf eine qualitative Analyse und eine quantitative Einordnung diskutiert. Danach wird eine Methode vorgestellt, die genutzt werden kann, um auch eine Vielzahl an Algorithmen in einer Rangfolge anzuordnen. Eine vorgeschlagene Methode, die versucht, einzelne Testergebn [...]
doi:10.26083/tuprints-00020463 fatcat:u6qq3smr4bdcfen5pcqot7wjcy