A multiscale random field model for Bayesian image segmentation

C.A. Bouman, M. Shapiro
1994 IEEE Transactions on Image Processing  
1 Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in conjunction with Markov random fields (MRF). While this approach performs well, it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, approximate MAP estimates are computationally expensive to compute, and unsupervised parameter estimation of the MRF is difficult. In this paper, we propose a new approach to Bayesian image segmentation which directly addresses
more » ... se problems. The new method replaces the MRF model with a novel multiscale random field (MSRF), and replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a novel estimation criteria. Together, the proposed estimator and model result in a segmentation algorithm which is not iterative and can be computed in time proportional to MN where M is the number of classes and N is the number of pixels. We also develop a computationally efficient method for unsupervised estimation of model parameters. Simulations on synthetic images indicate that the new algorithm performs better and requires much less computation than MAP estimation using simulated annealing. The algorithm is also found to improve classification accuracy when applied to the segmentation of multispectral remotely sensed images with ground truth data.
doi:10.1109/83.277898 pmid:18291917 fatcat:r4tnzihsfzeddktnnm37sio7d4