Fungi and Food Spoilage [book]

J. I. Pitt, A. D. Hocking
1997
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
more » ... re subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface to the Third Edition In contrast to the second edition, the third edition of "Fungi and Food Spoilage" is evolutionary rather than revolutionary. The second edition was intended to cover almost all of the species likely to be encountered in mainstream food supplies, and only a few additional species have been included in this new edition. The third edition represents primarily an updating -of taxonomy, physiology, mycotoxin production and ecology. Changes in taxonomy reflect the impact that molecular methods have had on our understanding of classification but, it must be said, have not radically altered the overall picture. The improvements in the understanding of the physiology of food spoilage fungi have been relatively small, reflecting perhaps the lack of emphasis on physiology in modern microbiological science. Much remains to be understood about the specificity of particular fungi for particular substrates, of the influence of water activity on the growth of many of the species treated, and even on such basic parameters as cardinal temperatures for growth and the influence of pH and preservatives. Since 1997, a great deal has been learnt about the specificity of mycotoxin production and in which commodities and products-specific mycotoxins are likely to occur. Changes in our understanding of the ecology of the included species are also in most cases evolutionary. A great number of papers have been published on the ecology of foodborne fungi in the past few years, but with few exceptions the basic ecology of the included species remains. Recent changes in our understanding of foodborne fungi include the realisation that Aspergillus carbonarius is a major source of ochratoxin A in the world food supply, that A. westerdijkiae and not A. ochraceus is the other common Aspergillus species making this toxin and that these species are responsible for ochratoxin A in foods outside the cool temperate regions, where Penicillium verrucosum is the important species. In recent years a number of new species have been found to be capable of producing aflatoxin, but the fact remains that most aflatoxin in the global food supply is produced by A. flavus and A. parasiticus. The taxonomy of Fusarium species is still undergoing major revision. However, the renaming of Fusarium moniliforme as F. verticillioides is the only change of importance here. Recent publications have improved our understanding of species -mycotoxin relationships within Fusarium. v Among the colleagues who helped us to prepare this edition, we wish to particularly thank Dr Anne-Laure Markovina, now of the University of Sydney, who assisted in literature searches and some cultural and photographic work, and Mr N.J. Charley who has continued his excellent work of curating the FRR culture collection, on which so much of the descriptive work in this book is based. vi Preface to the Third Edition Preface to the First Edition This book is designed as a laboratory guide for the food microbiologist to assist in the isolation and identification of common foodborne fungi. We emphasise the fungi which cause food spoilage, but also devote space to the fungi commonly encountered in foods at harvest, and in the food factory. As far as possible, we have kept the text simple, although the need for clarity in the descriptions has necessitated the use of some specialised mycological terms. The identification keys have been designed for use by microbiologist with little or no prior knowledge of mycology. For identification to genus level, they are based primarily on the cultural and physiological characteristics of fungi grown under a standard set of conditions. The microscopic features of the various fungi become more important when identifying isolates at the species level. Nearly all of the species treated have been illustrated with colony photographs, together with photomicrographs or line drawings. The photomicrographs were taken using a Zeiss WL microscope fitted with Nomarski interference contrast optics.
doi:10.1007/978-1-4615-6391-4 fatcat:jbn5ol4cmve2fdsfoc554h4ewm