On the Solutions of Quasi-Linear Elliptic Partial Differential Equations

Charles B. Morrey
1938 Transactions of the American Mathematical Society  
In this paper, we are concerned with the existence and differentiability properties of the solutions of "quasi-linear" elliptic partial differential equations in two variables, i.e., equations of the form A(x, y, z, p, q)r + 2B(x, y, z, p, q)s + C(x, y, z, p, q)t = D(x, y, z, p, q) These equations are special cases of the general elliptic equation t - 0, 0r > 0. * J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Mathematische Zeitschrift, vol. 38 (1933-34), pp.
more » ... 282. t E. Hopf, Zum analytischen Charakter der Lösungen regulärer zweidimensionaler Variations problème, Mathematische Zeitschrift, vol. 30, pp. 404-^113. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use Then a necessary and sufficient condition that fix, y) be A.C.T. on R is that fix, y) be continuous and <p(7?) and \piD) be absolutely continuous on each subregion A for which Ac/?. When this is true, <f,iD) = \ \ -dxdy, tiD) = f f -dxdy J J d dx J J D dy for each rectangle in R. Definition 5. We say that a function <p(x, y) is of class Lv on a region R if | <p | r is summable over R.
doi:10.2307/1989904 fatcat:ooumzbiurbe4blmccpm64srtda