Hamiltonian cycles and 1-factors in 5-regular graphs [article]

Nico Van Cleemput, Carol T. Zamfirescu
2021 arXiv   pre-print
It is proven that for any integer g ≥ 0 and k ∈{ 0, ..., 10 }, there exist infinitely many 5-regular graphs of genus g containing a 1-factorisation with exactly k pairs of 1-factors that are perfect, i.e. form a hamiltonian cycle. For g = 0, this settles a problem of Kotzig from 1964. Motivated by Kotzig and Labelle's "marriage" operation, we discuss two gluing techniques aimed at producing graphs of high cyclic edge-connectivity. We prove that there exist infinitely many planar 5-connected
more » ... gular graphs in which every 1-factorisation has zero perfect pairs. On the other hand, by the Four Colour Theorem and a result of Brinkmann and the first author, every planar 4-connected 5-regular graph satisfying a condition on its hamiltonian cycles has a linear number of 1-factorisations each containing at least one perfect pair. We also prove that every planar 5-connected 5-regular graph satisfying a stronger condition contains a 1-factorisation with at most nine perfect pairs, whence, every such graph admitting a 1-factorisation with ten perfect pairs has at least two edge-Kempe equivalence classes. The paper concludes with further results on edge-Kempe equivalence classes in planar 5-regular graphs.
arXiv:2008.03173v2 fatcat:5cyupj3qcreenc7y6hbss4nowe