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Abstract— Convex conditions, proposed as a feasibility test
of a set of linear matrix inequalities (LMIs), are given for
the design of a partially parameter dependent dynamic output
feedback controller for a class of discrete time systems with
delayed state. This class concerns the systems with time-varying
delay in the state and time varying parameters, both assumed
to be available on line. The controller is composed by a classical
part, feeding-back the system output and another one where the
delayed output of the system is feedback. This last part can be
avoided in case of inaccessible delay value, resulting in a more
classical control design. Different from other approaches found
in the literature, it is used a parameter dependent Lyapunov-
Krasovskii functional candidate and a slack matrix variable to
reduce the conservatism of the proposed approach. The result-
ing parameter dependent controller can be obtained on line as
a convex combination of some ‘vertex’ controllers. Numerical
examples are presented to illustrated the effectiveness of the
proposal.

I. INTRODUCTION

Systems with delay in the states have been object of

intensive study in the last two decades [23]. For both stability

analysis and stabilization, the Lyapunov-Krasovskii (L-K)

functional approach has found to be the most used [9], [21].

For discrete-time systems, new results have been proposed

with the aid of some L-K functional candidates, mainly for

robust stability analysis and robust state-feedback synthesis.

See, for instance, [4], [5], [7], [16], for non-convex stabiliza-

tion conditions. In general, L-K functionals are constructed

with constant and parameter independent matrices, thus,

using quadratic stability approach and usually considering

norm-bounded systems [1], [2], [8], [22]. However, this ap-

proach can be very conservative specially for time-invariant

systems. More new results, like [6], [28] and [11] employ

L-K functionals based on quadratic stability. Just a few

conditions in the literature deal with polytopic systems, see

for instance [15], [17], [18], [12] where convex conditions

are provided with parameter dependent L-K functionals. See

[20] for the case of swichted systems with state delay.

Despite the large number of studies about systems with

delay in the states, there are just a few that present convex
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Florianópolis, SC, Brazil. eugenio@das.ufsc.br
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methods for synthesis, specially for dynamic output feedback

controllers. Chen and Xu [26] present a full-order expo-

nential stable dynamic output feedback controller with H∞

criteria for a norm bounded uncertainty system. Dynamic

output feedback control is considered by Young et al. [27]

where a proposal for calculating a dynamic output feedback

stabilization controller using static output feedback tech-

niques is presented, only for precisely known systems. Also,

He et al. [10] present a design for output feedback control

for precisely known systems. For time-varying systems, Qiu

et al. [22] study the problem of delay dependent dynamic

output feedback control for a class of uncertain discrete-time

switched linear state-delayed systems with H∞ guaranteed

performance.

In this paper, polytopic time-varying discrete-time systems

with time-varying delay in the states are investigated. Both,

the parameter of the polytopic representation and the delay

are assumed to be available on line. The main contribution

of this note is to present convex conditions for designing

a dynamic output feedback controller which is dependent

on the time-varying parameters. Differently from other ap-

proaches found in the literature, the proposed dynamic output

controller can be design to cast feedback of both the output

signal of the system and its delayed valued. The dynamic

controller can be tuned on line assuring the closed loop

stability of the system for a wider range of delay variations.

This issue is achieved by means of a parameter dependent

L-K functional. It is worth to say that the structure of the

employed L-K functional is not new, being, in fact, simpler

than others such as those in [10], [19], etc. However, it seems

that the ideas presented here can be extended to match with

more general L-K functional structures. Examples are given

to show the effectiveness of the proposal. It is included some

time simulations as well as some comparisons with literature

results.

Notation: The notation used is quite standard: xt is the state

at time t. R is the set of real numbers and N
∗ stands for

the set of the natural numbers excluded the 0. I and 0 are

the identity and the null matrices of appropriate dimensions,

respectively. M = block-diag{M1, M2} stands for the

block-diagonal matrix M made up by the matrices M1 and

M2 at the main diagonal. M > 0 (M < 0) means that M

is positive (negative) definite. M ′ stands for the transpose

of M . ⋆ is used to indicate diagonally symmetric blocks in

the LMIs. Φd denotes the space of discrete vector functions

mapping the interval I[−d, 0] into R
n with a finite d ∈ N∗.

φd
t̂

∈ Φd denotes a sequence of d + 1 vectors xt̂ with
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t̂ ∈ I[t−d, t]. The j-th term of this sequence is xt+j−1−d =
φd
t,j ∈ R

n. It is defined ‖φd
t ‖D = maxj∈I[1,(d+1)] ‖φ

d
t,j‖

where ‖ · ‖ stands for the Euclidean vector norm. Φκ
d is the

set defined by Φκ
d = {φd

t : ‖φd
t ‖D < κ}, with κ ∈ R+. φ̂d

stands for the null sequence φ̂d = {0, . . . , 0}
︸ ︷︷ ︸

(d+1) terms

.

II. PROBLEM STATEMENT

Consider the discrete time-varying system with delayed

state given by

xk+1 = A(αk)xk +Ad(αk)xk−dk
+B(αk)uk (1)

yk = Cxk (2)

with xk = x(k) ∈ φτ
0(k) begin the state vector at k-th sample

for k ∈ I[−d̄, 0], matrices A(αk) ∈ R
n×n, Ad(αk) ∈ R

n×n

and B(αk) ∈ R
n×p are convex combinations of vertex

matrices Ai, Ad,i Bi, i = 1, . . . , N and C ∈ R
q×n. φτ

0(k)
is the initial condition, necessary to assure existence and

uniqueness for the solutions of (1), with τ = max(dk).
xk−dk

is the state vector at dk past samples and dk = d(k) ∈
N∗ is the time-varying delay subject to

|dk+1 − dk| = δ ∈ I[0, d̄] (3)

uk = u(k) ∈ R
p stands for the control signal, considered

given by a dynamic output feedback controller given by

xc,k+1 = Ac(αk)xc,k +Acd(αk)xc,k−dk

+Bc(αk)yk +Bcd(αk)yk−dk
(4)

uk = Ccxck + Ccdxc,k−dk
+Dcyk +Dcdyk−dk

(5)

Cc ∈ R
p×n, Ccd ∈ R

p×n, Dc ∈ R
p×q and Dcd ∈ R

p×q are

constant and known matrices. The remain matrices of the

system and controller are time-varying and given as follows

Ξ(αk) ≡
[

A(αk) Ad(αk) B(αk) 0 0

Ac(αk) Acd(αk) 0 Bc(αk) Bcd(αk)

]

=

[
A Ad B 0 0

Ac Acd 0 Bc Bcd

]

(αk) =

N∑

i=1

Ξiαk,i (6)

with Ξi ∈ R
2n×2n+p+2q assembled from the vertex matrices

Ai, Ad,i, Bi, Ac,i, Acd,i, Bc,i, Bcd,i, i = 1, . . . , N . The

time-varying parameter αk is supposed available on line and

satisfies

Ω ≡
{

αk : αk ∈ R
N ,

N∑

i=1

αk,i = 1, αk,i ≥ 0
}

(7)

Thus, Ξ(αk) belongs to a polytopic domain with vertices

Ξi, i = 1, . . . , N . By defining an augmented state vector

ζk =
[
x′
k x′

c,k

]′
∈ R

2n, the closed loop system (1)-(5)

can be rewritten as

ζk+1 = A(αk)ζk +Ad(αk)ζk−dk
(8)

where

A(αk) =

[
A(αk) +B(αk)DcC B(αk)Cc

Bc(αk)C Ac(αk)

]

∈ R
2n×2n

(9)

and

Ad(αk) =

[
Ad(αk) +B(αk)DcdC B(αk)Ccd

Bcd(αk)C Acd(αk)

]

∈ R
2n×2n (10)

Note that the closed loop matrices A(αk) and Ad(αk) belong

to a polytopic domain with vertices given by Ai and Ad,i,

i = 1, . . . , N , as done for Ξ(αk).
If ζk ∈ φτ

t (k) = φ̂τ for k ∈ I[t−τ, t], then an equilibrium

condition is achieved for the closed loop system (8), since

ζk+1 = ζk = 0, ∀k > t and ∀α ∈ Ω.

Definition 1: For a given αk ∈ Ω, the trivial solution of

(8) is said uniformly asymptotically stable if for any κ ∈
R+ such that for all initial conditions ζk ∈ φτ

0(k) ∈ Φκ
τ ,

k ∈ I[−τ, 0], it is verified

lim
t→∞

φτ
t,j(k) = 0, ∀j ∈ I[1, τ + 1]

The main objective in this work is to formulate convex

optimization problems, expressed as LMIs, that can solve

the following fundamental issue:

Problem 1 (Compensator design): Given the discrete

time-varying system with delayed state (1)-(2), determine, if

possible, a dynamic output compensator as in (4)-(5) such

that (8) is asymptotically stable.

If the delay dk is available at each sample time, then it is

possible to use a dynamic compensator as described by (4)-

(5). It is expected that this degree of freedom can be used to

improve the closed loop performance. On the other hand, if

the delay dk is not available, the approach presented in this

paper is still valid, with Acd = 0, Bcd = 0, Ccd = 0 and

Dcd = 0 in (4)-(5).

III. PRELIMINARY RESULTS

The following L-K functional candidate is considered in

this paper

V (α, k) =

3∑

v=1

Vv(α, k) (11)

with

V1(αk, k) = x′
kP(αk)xk, (12)

V2(αk, k) =

k−1∑

j=k−dk

x′
jQ(αk)xj , (13)

V3(αk, k) =

1−d
∑

ℓ=2−δ

k−1∑

j=k+ℓ−1

x′
jQ(αk)xj (14)

This L-K functional candidate has been used to investigate

the stability of (8) in [13], with

P(αk) =

N∑

i=1

αk,iPi Q(αk) =

N∑

i=1

αk,iQi (15)

The following result is well known and will be used in this

paper.

Lemma 1 (Finsler’s Lemma): Let ω ∈ R
n, R(αk) =

R(αk)
′ ∈ R

n and B(αk) ∈ R
m×n such that

rank(B(αk)) < n. The following statements are equivalent:
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i) ω′R(αk)ω < 0, ∀ω : B(αk)ω = 0, ω 6= 0

ii) ∃ X (αk) ∈ R
n×m : R(αk) + X (αk)B(αk) +

B(αk)
′X (α)′ < 0

Proof: The proof follows similar steps of the proof

presented in [3] replacing the precisely known matrices by

parameter dependent matrices.

The following result can be recovered from [14, Th. 2]

imposing G = 0 and replacing A, Ad, F , P and Q by A,

Ad, F , P and Q, respectively.

Lemma 2 (Stability Analysis): If there exist symmetric

positive definite matrices Pi ∈ R
2n×2n, Qi ∈ R

2n×2n,

i = 1, . . . , N , matrix F ∈ R
2n×2n and a scalar β = 1 + δ

such that

Θ1 =





Pj + F + F ′ −FAi −FAd,i

⋆ βQi − Pi 0

⋆ ⋆ −Qℓ



 < 0

i, j, ℓ = 1, . . . , N (16)

then, the closed loop system (8) is asymptotically stable

∀αk ∈ Ω.

Proof: The positivity of the functional (11)-(15) is

assured with the hypothesis of Pi = P ′
i > 0, Qi = Q′

i > 0.

To (11) be a L-K functional, besides its positivity, it is

necessary to verify

∆V (αk, k) < 0, ∀ [x′
k x′

k−dk
]′ 6= 0 (17)

∀ αk ∈ Ω. From hereafter, the αk dependency is omitted

in the expressions Vv(k), v = 1, . . . , 3, for simplicity of the

notation. To calculate (17), consider

∆V1(k) = x′
k+1P(αk+1)xk+1 − x′

kP(αk)xk (18)

∆V2(k) = x′
kQ(αk)xk − x′

k−dk
Q(αk−dk

)xk−dk

+

k−1∑

i=k+1−dk+1

x′
iQ(αi)xi −

k−1∑

i=k+1−dk

x′
iQ(αi)xi (19)

and

∆V3(k) = (d̄− d)x′
kQ(αk)xk −

k−d
∑

i=k+1−d̄

x′
iQ(αi)xi (20)

Observe that, the third term in equation (19), Ξk ≡
∑k−1

i=k+1−dk+1
x′
iQ(αi)xi, can be rewritten as

Ξk =

k−1∑

i=k+1−d

x′
iQ(αi)xi +

k−d
∑

i=k+1−dk+1

x′
iQ(αi)xi

≤

k−1∑

i=k+1−dk

x′
iQ(αi)xi +

k−d
∑

i=k+1−d̄

x′
iQ(αi)xi

(21)

Using (21) in (19), one gets

∆V2(k) ≤ x′
kQ(αk)xk − x′

k−dk
Q(αk−dk

)xk−dk

+

k−d
∑

i=k+1−d̄

x′
iQ(αi)xi (22)

So, taking into account (18), (20) and (22), the following

upper bound for (17) can be obtained

∆V (k) ≤ x′
k+1P(αk+1)xk+1

+ x′
k[βQ(αk)− P(αk)]xk

− x′
k−dk

Q(αk−dk
)xk−dk

< 0 (23)

Applying Lemma 1 with ω = [x′
k+1 x′

k x′
k−dk

]′, B(αk) =
[I −A(αk) −Ad(αk)], appropriate R(αk) and the special

choice of X (αk) = [F ′ 0 0]′ it is obtained





P(αk+1) + F + F ′ FA(αk)
⋆ βQ(αk)− P(αk)
⋆ ⋆

FAd(αk)
0

−Q(αk−dk
)



 < 0 (24)

which can be recovered from (16) by
∑N

i

∑N
j

∑N
ℓ αk+1,jαk,iαk−dk,ℓΘ1, αk ∈ Ω, completing

the proof.

In this paper, only dynamic output feedback stabilization

design is considered. The results, however, can be extended

to other cases including the H∞ guaranteed cost control

design.

IV. MAIN RESULTS

This section contains the main result of this paper that is

a convex condition for design of a dynamic output feedback

control that partially depends on the parameters of the

system.

Theorem 1: If there exists matrices Y , X , T , P̄12,i, Q̄12,i,

Âc,i, Âcd,i, and positive definite symmetric matrices P̄11,i,

P̄22,i, Q̄11,i, Q̄22,i, all belonging to R
n×n, matrices B̂c,i ∈

R
n×q , B̂cd,i ∈ R

n×q , i = 1, . . . , N , matrices Ĉc ∈ R
p×n,

Ĉcd ∈ R
p×n, D̂c ∈ R

p×q , D̂cd ∈ R
p×q, and a scalar β =

1 + δ such that (30) is verified, then the dynamic output

feedback controller (4)-(5) with matrices given by

Dc = D̂c, Cc = (Ĉc −DcCX)Z−1

Bc,i = (V ′)−1(B̂c,i − Y ′BiDc),
Ac,i = (V ′)−1Γc,iZ

−1

Γc,i =

Âc,i − Y ′(Ai +BiDcC)X
−V ′Bc,iCX − Y ′BiCcZ







(25)

Dcd = D̂cd, Ccd = (Ĉcd −DcdCX)Z−1

Bcd,i = (V ′)−1(B̂cd,i − Y ′BiDcd),
Acd,i = (V ′)−1Γcd,iZ

−1

Γcd,i =

Âcd,i − Y ′(Ad,i +BiDcdC)X
−V ′Bcd,iCX − Y ′BiCcdZ







(26)

and matrices N , Z and V satisfying

NV = I −XY (27)

V ′Z = T − Y ′X (28)

stabilizes asymptotically the discrete-time varying system

with delayed state (1)-(2). Besides, (11)-(15) is a L-K
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functional that assures the asymptotic stability of the closed

loop system with

Pi = Φ′

[
P̄11,i P̄12,i

P̄ ′
12,i P̄22,i

]

Φ; Qi = Φ′

[
Q̄11,i Q̄12,i

Q̄′
12,i Q̄22,i

]

Φ

(29)

i = 1, . . . , N and Φ =

[
I −XZ−1

0 Z−1

]

Proof: The proof is inspired in the work of Scherer

and co-workers [24] and is based on the stability conditions

established in Lemma 2. Note that F in (16) is a regular

matrix due to Pj > 0 and Pj + F + F ′ < 0. Matrix F and

its inverse can be partioned as

F =

[
Y M

V •

]

; F−1 =

[
X N

Z •

]

(31)

where • does not matter. Thus, Y and X are nonsingular.

By (30) and (29), it is possible to see that P̄νν,i > 0 and

Q̄νν,i > 0, ν = 1, 2, i = 1, . . . , N , implying the regularity

of Y and X . As done for matrix F , it is possible conclude

that
[

Y ′ T

I X ′

]

=

[
I Y ′

0 I

] [
0 T − Y ′X

I X

]

has full rank and so does T − Y ′X (see (28)). Therefore,

it is always possible to choose regular matrices Z and V

in (28) by an adequate matrix decomposition. LMI (30) can

be obtained from (16) by pre- and post-multiplying Θ1 by

T = I3 ⊗ Λ′ and its transpose, respectively, with

Λ =

[
I X

0 Z

]

,

taking (29), (31), matrices X , Z , Y , T and N satisfying (27)-

(28) and making the following changes of variables: D̂c =
Dc, D̂cd = Dcd, Ĉc = D̂cCX + CcZ , Ĉcd = D̂cdCX +
CcdZ , B̂c,i = Y ′BiD̂c + V ′Bc,i, B̂cd,i = Y ′BiD̂cd +
V ′Bcd,i, Âc,i = Y ′(Ai+BiDcC)X+Y ′BiCcZ+V ′Bc,iX+
V ′Ac,iZ , Âcd,i = Y ′(Ad,i + BiDcdC)X + Y ′BiCcdZ +
V ′Bcd,iX + V ′Acd,iZ .

When applying Theorem 1, equations (27)-(28) are used to

determine V , N and Z with T , X and Y . They can be solved

by standard matrix decomposition, such as orthogonal-

triangular decomposition (QR), applied on (28) and then

isolating N in (27). Obviously, other decompositions yield

different values of controller parameters. In this paper, the

results does not depend on N . It is expected that this matrix,

which is part of F−1, could be exploited in future research,

such as for design a controller with some guaranteed perform

index. Also, note that conditions on Theorem 1 does not

impose any restriction on the L-K functional matrices P and

Q. Thanks to the use of the slack matrix variable F , it is

possible to employ a parameter dependent L-K functional

candidate, and determine a parameter dependent dynamic

output feedback controller. This can be viewed as a counter

part of the usually found in the literature, where constant

and parameter independent controllers and L-K matrices are

employed.

The conditions presented in Theorem 1 can also be used in

case of unknown delay. In this case, it is sufficient to impose

Âcd = 0, B̂cd, D̂cd = 0 and Ĉcd = 0. Thus, the resulting

dynamic output feedback controller does not depend on dk.

Notice that conditions in Theorem 1 can be used to recover

the quadratic stability approach, i.e., constant matrices in the

L-K functional by imposing Pi = P and Qi = Q in (30).

This means that (11)-(15) is a constant L-K functional. In

this case the LMI presented in (30) must be tested only for

i = 1, . . . , N .

It is worth to say that the presented method has two ad-

vantages. Firstly, the convex design of a parameter dependent

dynamic output feedback controller that can deal with time-

varying delay systems. Secondly, the proposed controller

structure, that allows the feedback of past values of the

output. It is expected that this issue can be exploited in

future research, to improve some performance index, such

as guaranteed H∞ cost.

A. Numerical complexity

The numerical complexity of the proposed conditions

depend on the number of variables, K, and on the num-

ber of rows in the LMIs, L. Using the program SeDuMi

[25], the number of floating point operations performed to

solve convex optimization problems has an order given by

K2L5/2+L7/2. Then, the conditions present in Theorem 30

have K = 3n2(2N + 1) + 2n(N + p + q) + 2pq scalars

variables and L = 6N3n rows.

V. NUMERICAL EXAMPLES

In both examples it has been used an Intel Core 2 Duo

T 8100, 2.10 GHz processor with 4 Gb of RAM and the

SeDuMi [25]. The results achieved are compared with other

obtained by conditions available in the literature.

Example 1 (Time-varying system): Consider the unstable

discrete time-varying system with matrices

A(ρk) = A0(1 + ρk); B(ρk) = B0(1 + ρk) (32)

Ad(ρk) = Ad0(1 + ρk); C = [1 0]; D = 0 (33)

where the nominal matrices are give by

[A0|Ad0|B0] =

[
0.9429 0.55 0.1 0.2 0

0 1.1 0.15 0.1 1

]

. (34)

It is considered that 0 ≤ ρk ≤ 0.2, which leads to a polytopic

representation of this system given by (1) with vertices:

[A1|Ad1|B1] = [A0|Ad0|B0], (35)

[A2|Ad2|B2] =

[
1.1314 0.66 0.12 0.24 0

0 1.32 0.18 0.12 1.2

]

.

(36)

The purpose here is to design a dynamic output-feedback

controller to stabilizing this system. Using Theorem 1

a search has been made on δ for stabilizable con-

trollers. The maximum value achieved is δ = 200, 939.

For δ = 20 the matrices of the controller are given
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









P̄11,j + Y + Y ′ P̄12,j + T + I −Y ′Ai − B̂cC −Âc,i −Y ′Ad,i − B̂cdC −Âcd,i

⋆ P̄22,j +X +X ′ −Ai −BiD̂cC −AiX −BiĈc −Ad,i −BiD̂cdC −Ad,iX −BiĈcd

⋆ ⋆ βQ̄11,i − P̄11,i βQ̄12,i − P̄12,i 0 0

⋆ ⋆ ⋆ βQ̄22,i − P̄22,i 0 0

⋆ ⋆ ⋆ ⋆ −Q̄11,ℓ −Q̄12,ℓ

⋆ ⋆ ⋆ ⋆ ⋆ −Q̄22,ℓ











< 0

i, j, ℓ = 1, . . . , N. (30)

by [Cc|Ccd] =
[
−0.0114 0.0239 −0.0018 0.0017

]
,

[Dc|Dcd] =
[
−1.4920 −0.3460

]
,

[Ac1|Bc1] =

[
−0.7270 3.6700 −210.3141
0.0001 0.0833 0.2001

]

,

[Ac2|Bc2] =

[
−0.8708 4.3061 −252.0757
0.0002 0.0951 0.2609

]

,

[Acd1|Bcd1] =

[
−0.2434 0.2137 −33.6412
0.0004 0.0077 0.0538

]

,

[Acd2|Bcd2] =

[
−0.2922 0.2640 −40.3933
0.0005 0.0077 0.0697

]

.

These two controller vertices are used to define a discrete-

time parameter varying controller. A time simulation is

presented in Figure 1 where the closed-loop system output

(top) is shown with the respective control signal (bottom).

In this simulation it has been considered a time-varying
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Fig. 1. Closed-loop output signal, yk on top, and control signal, uk on
bottom.

behavior for αk as presented in the bottom of Figure 2

and that dk has a dominant increasing behavior (top of

Figure 2). Observe that, dk attends (3). It is assumed as

initial condition xk = [1 − 1]′, k ≤ 0. A state perturbation

has been applied at k = 201, by adding [−1 1]′ to the

state vector. At this instant the delay value is d201 = 75.

The consequence of this perturbation appears at different

some instants ahead as a combined effect of the increasing

delay and the stabilization time of the closed loop system.
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Fig. 2. Time-varying parameters dk (top) and αk (bottom).

Such behavior can be observed in Figure 1 at instants about

k = 322, k = 518 and k = 823 where the delay is about

(see Figure 2) d322 = 120, d518 = 196, d823 = 306,

respectively. As can be viewed in Figure 1, the closed loop

system is stable. It has been verified that, although stable

for large values of delay, the required time to stabilize the

closed loop system can be larger than expected for real

world applications. Thus, to get a better time response, it

is interesting to consider some performance specifications,

such as H∞ or pole location [17]. In case of unavailable

delay value on line, Theorem 1 can still be employed to

search a stabilizing dynamic output controller. In this case,

a maximum of δ = 9 can be achieved with Acd,i = 0,

Bcd,i = 0, Dcd = 0, Cc =
[
−0.0040 0.0003

]
, Dc =

[
−2.3196

]
and

[Ac1|Bc1] =

[
−1.0038 0.1511 −1043.8203
0.0000 0.0021 0.0478

]

,

[Ac2|Bc2] =

[
−1.2038 0.1426 −1252.0126
0.0000 0.0031 0.0465

]

.

Example 2 (Precisely known system): This example is

borrowed from [10] where a precisely known system inves-

tigated with system matrices

[
A Ad B

C Cd D

]

=







0.9 0.5 0.3 0 1
0.8 0.1 0.8 0.5 0.5
1 1 1 0 0
0 1 1 1 0






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and the output signal is given by yk = Cxk + Cdxk−dk
.

Here, the delayed part of the output is omitted, i.e., Cd

is made null. In [10] the conditions are delay-dependent

and the dynamic controller output has constant matrices and

employs only the output signal, i.e. it does not take into

account the delayed output signal as done here. Here, a linear

search has been made over δ to determine its maximum

value such as Theorem 1 is feasible. It has been found

δmax = 5508 (see (3)), for any finite delay. By using the

delay-dependent and nonlinear techniques presented in [10]

the maximum delay stabilizable is given by dmax = 1000.

Thus, it is clear that the strategy presented here can lead

to less conservative results despite the simpler Lyapunov-

Krasovskii functional employed. This wider range of delay

variation is reached thanks to the proposed structure of

dynamic feedback control, that includes a delayed output

signal.

VI. CONCLUSIONS

A convex condition for the design of a partially parameter

dependent dynamic output feedback to stabilze discrete time-

varying systems with time-varying delay in the state is given

in this note. It is used a paramenter dependent Lyapunov-

Krasovskii functional and some slack matrix variables to de-

rive a controller which output is based on the current system

output and on the delayed output of the system. A numerical

example is presented to illustrate the effectiveness of the

proposal. It is expected that the approach presented here

could be extended to coupe with more complete Lyapunov-

Krasovskii functionals, leading to less conservative stabiliza-

tion conditions. Also, the presented approach can be used to

take into account some performance index such as the H∞

guaranteed cost.
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