Juan Echeverrï#!a, Emiliano De Cristofaro, Nicolas Kourtellis, Ilias Leontiadis, Gianluca Stringhini, Shi Zhou
2018 Proceedings of the 34th Annual Computer Security Applications Conference on - ACSAC '18  
Botnets in online social networks are increasingly often affecting the regular flow of discussion, attacking regular users and their posts, spamming them with irrelevant or offensive content, and even manipulating the popularity of messages and accounts. Researchers and cybercriminals are involved in an arms race, and new and updated botnets designed to defeat current detection systems are constantly developed, rendering such detection systems obsolete. In this paper, we motivate the need for a
more » ... generalized evaluation in Twitter bot detection and propose a methodology to evaluate bot classifiers by testing them on unseen bot classes. We show that this methodology is empirically robust, using bot classes of varying sizes and characteristics and reaching similar results, and argue that methods trained and tested on single bot classes or datasets might not able to generalize to new bot classes. We train one such classifier on over 200,000 data points and show that it achieves over 97% accuracy. The data used to train and test this classifier includes some of the largest and most varied collections of bots used in literature. We then test this theoretically sound classifier using our methodology, highlighting that it does not generalize well to unseen bot classes. Finally, we discuss the implications of our results, and reasons why some bot classes are easier and faster to detect than others.
doi:10.1145/3274694.3274738 dblp:conf/acsac/EcheverriaCKLSZ18 fatcat:nso6plpfv5a6bd55mipu6r4c6m