A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Real Time Arrhythmia Monitoring and Classification Based on Edge Computing and DNN
2021
Wireless Communications and Mobile Computing
In this paper, we investigate how to incorporate intelligence into the human-centric IoT edges to detect arrhythmia, a heart condition often associated with morbidity and even mortality. We propose a classification algorithm based on the intrapatient convolutional neural network model and the interpatient attention residual network model to automatically identify the type of arrhythmia in the edges. As the imbalance categories in the MIT-BIH arrhythmia database which needs to be used in the
doi:10.1155/2021/5563338
fatcat:k7ltvr2q3fbstpt4qthdlxhbjq