The Internet Archive has a preservation copy of this work in our general collections. The file type is <code>application/pdf</code>.
Some six-dimensional rigid forms
<span title="2005-01-04">2005</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
One can always decompose Dirichlet-Voronoi polytopes of lattices non-trivially into a Minkowski sum of Dirichlet-Voronoi polytopes of rigid lattices. In this report we show how one can enumerate all rigid positive semidefinite quadratic forms (and thereby rigid lattices) of a given dimension d. By this method we found all rigid positive semidefinite quadratic forms for d = 5 confirming the list of 7 rigid lattices by Baranovskii and Grishukhin. Furthermore, we found out that for d <= 5 the
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0401191v3">arXiv:math/0401191v3</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/borzmbhklfgclpqh7mnadzgvhi">fatcat:borzmbhklfgclpqh7mnadzgvhi</a>
</span>
more »
... ency graph of primitive L-type domains is an infinite tree on which GL_d(Z) acts. On the other hand, we demonstrate that in d = 6 we face a combinatorial explosion.
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0401191/math0401191.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0401191v3" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>