Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques

Huaijun Wang, Jing Zhao, Junhuai Li, Ling Tian, Pengjia Tu, Ting Cao, Yang An, Kan Wang, Shancang Li
2020 Security and Communication Networks  
Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care, rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based scheme that can recognize both specific activities and the transitions between two different activities of short
more » ... duration and low frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%, which are better than those of most existing similar models over the open HAPT dataset.
doi:10.1155/2020/2132138 fatcat:wfvdnsogavbr7pbue3wogjwy5m