Whole genome phylogenies reflect long-tailed distributions of recombination rates in many bacterial species [article]

Thomas Sakoparnig, Chris Field, Erik van Nimwegen
2019 bioRxiv   pre-print
Although homologous recombination is accepted to be common in bacteria, so far it has been challenging to accurately quantify its impact on genome evolution within bacterial species. We here introduce methods that use the statistics of single-nucleotide polymorphism (SNP) splits in the core genome alignment of a set of strains to show that, for many bacterial species, recombination dominates genome evolution. Each genomic locus has been overwritten so many times by recombination that it is
more » ... sible to reconstruct the clonal phylogeny and, instead of a consensus phylogeny, the phylogeny typically changes many thousands of times along the core genome alignment. We also show how SNP splits can be used to quantify the relative rates with which different subsets of strains have recombined in the past. We find that virtually every strain has a unique pattern of recombination frequencies with other strains and that the relative rates with which different subsets of strains share SNPs follow long-tailed distributions. Our findings show that bacterial populations are neither clonal nor freely recombining, but structured such that recombination rates between different lineages vary along a continuum spanning several orders of magnitude, with a unique pattern of rates for each lineage. Thus, rather than reflecting clonal ancestry, whole genome phylogenies reflect these long-tailed distributions of recombination rates.
doi:10.1101/601914 fatcat:vslen5s7gjcrvoq4vs5dykqoj4