Attributes and categories for generic instance search from one example

Ran Tao, Arnold W.M. Smeulders, Shih-Fu Chang
2015 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)  
This paper aims for generic instance search from one example where the instance can be an arbitrary 3D object like shoes, not just near-planar and one-sided instances like buildings and logos. Firstly, we evaluate state-of-the-art instance search methods on this problem. We observe that what works for buildings loses its generality on shoes. Secondly, we propose to use automatically learned categoryspecific attributes to address the large appearance variations present in generic instance
more » ... On the problem of searching among instances from the same category as the query, the category-specific attributes outperform existing approaches by a large margin. On a shoe dataset containing 6624 shoe images recorded from all viewing angles, we improve the performance from 36.73 to 56.56 using category-specific attributes. Thirdly, we extend our methods to search objects without restricting to the specifically known category. We show the combination of category-level information and the category-specific attributes is superior to combining category-level information with low-level features such as Fisher vector.
doi:10.1109/cvpr.2015.7298613 dblp:conf/cvpr/TaoSC15 fatcat:xxkjwg5obrev5kd7rzzxjy6f3i