A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A Hidden Markov Model for Analyzing Eye-Tracking of Moving Objects
[post]
2019
unpublished
Eye-tracking provides an opportunity to generate and analyze high-density data relevant to understanding cognition. However, while events in the real world are often dynamic, eye-tracking paradigms are typically limited to assessing gaze toward static objects. In this study, we propose a generative framework, based on a hidden Markov model (HMM), for using eye-tracking data to analyze behavior in the context of multiple moving objects of interest. We apply this framework to analyze data from a
doi:10.31234/osf.io/mqpnf
fatcat:mqhoxun3izdrtdw2xibc3l62nu