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This paper proposes a computationally efficient simulation-based optimization (SO) algorithm suitable to

address large-scale generally constrained urban transportation problems. The algorithm is based on a novel

metamodel formulation. We embed the metamodel within a derivative-free trust region algorithm and evalu-

ate the performance of this SO approach considering tight computational budgets. We address a network-wide

traffic signal control problem using a calibrated microscopic simulation model of evening peak period traffic

of the full city of Lausanne (Switzerland), which consists of more than 600 links and 200 intersections. We

control 99 signal phases of 17 intersections distributed throughout the entire network. This SO problem

is a high-dimensional nonlinear constrained problem. It is considered large-scale and complex in the fields

of derivative-free optimization, traffic signal optimization and simulation-based optimization. We compare

the performance of the proposed metamodel method to that of a traditional metamodel method and that

of a widely used commercial signal control software. The proposed method systematically and efficiently

identifies signal plans with improved average city-wide travel times.
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1. Introduction

The massive amount and variety of mobility data that can now be collected through,

for instance, ubiquitous mobile devices, is enhancing our fundamental understanding of

individual mobility. For instance, it improves our understanding of the intricate behavior

of travelers, e.g., how they make activity and thereby travel decisions, and how these

decisions are motivated by an underlying objective to enhance their well-being.

State-of-the-art microscopic traffic simulation models embed such disaggregate models

of traveler behavior (e.g., departure time choice, multi-modal route choice, access and

response to en-route traffic information), and account for behavior heterogeneity. They

represent individual vehicles, and can therefore be coupled with vehicle-specific simulators

(e.g., propulsion simulators) to yield detailed estimates of the performance of vehicles

(e.g., energy consumption or emissions estimates) in networks with complex topologies

and complex traffic dynamics. Additionally, microscopic simulators provide a detailed

representation of the underlying supply (e.g., variable message signs, public transport

priorities).

Microscopic traffic simulators describe in detail the interactions between (i) vehicle per-

formance, (ii) traveler behavior and (iii) the underlying transportation infrastructure, and

yield an elaborate description of traffic dynamics in urban networks. They are therefore

suitable tools to address transportation problems where a detailed representation of either

of these three components should be accounted for.

Microscopic simulators are popular tools used in practice to evaluate the performance

of a set of predetermined transportation strategies. Cities such as Toronto, New York,

Boston, Stockholm and Hong Kong have used these tools to inform their planning and

operations decisions (Traffic Technology International 2012a,b, Papayannoulis et al. 2011,

Toledo et al. 2003, Hasan 1999).

For a given strategy, these simulators can provide accurate and detailed performance

estimates. Their use is mostly limited to what-if analysis (also called scenario-based anal-

ysis) or sensitivity analysis. That is, they are used to evaluate the performance of a set

of predetermined transportation alternatives (e.g., traffic management or network design

alternatives), such as in Bullock et al. (2004), Ben-Akiva et al. (2003), Hasan et al. (2002),

Stallard and Owen (1998),Gartner and Hou (1992) and Rathi and Lieberman (1989). See

further references in Ben-Akiva et al. (2003).

The numerous models of disaggregate traveler behavior, vehicle-performance and sup-

ply components lead to detailed performance estimates, yet also to models which are

expensive to develop and calibrate, and computationally expensive to evaluate. Thus, an

accurate estimation of performance is computationally costly to obtain. Additionally, these
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simulators derive stochastic nonlinear, and typically nonconvex, performance measures

with no closed-form available. For these reasons, the use of these simulators to address

optimization problems is a challenge.

Currently, the use of these simulation tools is mostly limited to what-if analysis. With

the ubiquity of access to real-time traffic information, and the increasing number of pre-

vailing and interacting traffic control strategies, traffic dynamics of congested networks

are becoming more and more intricate. Thus, determining a priori a set of alternatives

with good local and network-wide performance is no longer feasible. Thus, there is a need

to embed these detailed simulators within optimization frameworks in order to systemat-

ically identify alternatives with improved local and network-wide performance. Addition-

ally, given the high cost of developing large-scale simulation tools, transportation projects

would benefit from computationally efficient methods that allow the use of simulators to

go beyond a what-if analysis.

This paper proposes a simulation-based optimization (SO) method that allows large-

scale urban transportation problems to be addressed with detailed microscopic traffic

simulators. We focus on problems where the objective function is derived from the simula-

tor and, thus, no closed-form analytical expression is available. The problems have general

(e.g., nonconvex) constraints. Closed-form analytical and differentiable expressions are

available for all constraints (i.e., the constraints are not simulation-based).

These urban transportation problems can be formulated as:

min
x∈Ω

f(x, z;p)≡E[F (x, z;p)], (1)

where the purpose is to minimize the expected value of a given stochastic performance

measure F , x denotes the deterministic continuous decision vector, z denotes other endoge-

nous variables, and p denotes the deterministic exogenous parameters. For instance, in

this paper we use the proposed SO approach to solve a traffic signal control problem

where F denotes trip travel time, x represents the green times of the signal phases, z

accounts, for instance, for signalized link capacities, route choice decisions, and p accounts,

for instance, for the network topology, the total traffic demand, and fixed lane attributes

(e.g., length, grade, maximum speed). The feasible space Ω consists of a set of general,

typically nonconvex, deterministic, analytical and differentiable constraints.

This paper proposes a technique that can efficiently address generally constrained large-

scale simulation-based urban transportation problems. The performance of the technique

is evaluated by considering a network-wide traffic signal control problem. This problem is

considered large-scale and complex for derivative-free algorithms, signal control algorithms

and simulation-based optimization algorithms.
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Additionally, the paper focuses on SO techniques with good short-term performance,

i.e., computationally efficient methods that can identify alternatives with improved per-

formance within a tight computational budget. The computational budget can be defined

as a limited number of simulation runs or a limited simulation run time. Such techniques

respond to the needs of transportation practitioners by allowing them to address problems

in a practical manner.

We present a review of past work in this field in Section 2. In Section 3 of this paper,

we present the methodology. We then present the traffic signal control problem which is

used to evaluate the scalability and short-term performance of this approach (Section 4).

Empirical results are detailed in Section 5, followed by conclusions (Section 6).

2. Literature Review

Few SO methods that embed microscopic simulators have been developed (Li et al. 2010,

Stevanovic et al. 2008, Branke et al. 2007, Yun and Park 2006, Hale 2005, Joshi et al.

1995). The most common approach is the use of heuristic algorithms and, in particular, the

use of genetic algorithms (see Yun and Park (2006) for a review). These methods embed

microscopic simulators within general-purpose optimization algorithms. They treat the

simulator as a black-box, using no a priori structural information about the underlying

transportation problem (e.g., network structure). They therefore require a large number

of simulated observations in order to identify transportation strategies (i.e., trial points)

with improved performance.

This paper proposes an SO technique with good short-term performance suitable for

microscopic traffic simulators to be used to address complex high-dimensional problems.

In order to derive computationally efficient methods that embed inefficient simulators,

information from other more efficient (i.e., tractable) models that provide analytical

structural information to the algorithm should be used throughout the optimization

process.

In general, methods to address SO problems can be classified as direct-search meth-

ods, stochastic gradient methods and metamodel methods. For reviews of SO methods

see Hachicha et al. (2010), Barton and Meckesheimer (2006), Fu et al. (2005). This paper

focuses on metamodel methods. For a description of why metamodel techniques are a suit-

able approach to address complex simulation-based transportation problems, see Osorio

and Bierlaire (forthcoming).

Metamodel methods build an analytical approximation of the simulation-based com-

ponents of the optimization problem (e.g., objective function, constraints). In this paper,
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Optimization based on a metamodel

Opimization routine
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Figure 1 Metamodel simulation-based optimization methods. Adapted from Alexandrov et al. (1999).

the objective function is simulation-based. Thus, the metamodel provides an analyti-

cal approximation of the objective function. By resorting to a metamodel approach, the

stochastic response of the simulation is replaced by an analytical response function (the

metamodel), such that deterministic optimization techniques can be used. Metamodel

techniques use an indirect-gradient approach, i.e., they compute the gradient of the meta-

model, which is a deterministic function. Thus, traditional deterministic gradient-based

optimization algorithms for generally constrained problems can be used.

Metamodel SO methods are iterative methods based on two main steps depicted in Fig-

ure 1 (for more details see Osorio and Bierlaire (forthcoming)). Step 1 fits the metamodel

based on the current sample of simulated observations. Step 2 uses the fitted metamodel

to perform optimization and derive a trial point (e.g., a suitable traffic management or

network design alternative). The performance of the trial point is then evaluated by the

simulator, which leads to new observations. As new observations become available, the

metamodel is fitted again (step 1) leading to more accurate metamodels and ultimately

to trial points with improved performance (step 2).

Reviews of metamodels are given by Conn et al. (2009b), Barton and Meckesheimer

(2006) and Søndergaard (2003). Metamodels can be classified as either physical or func-

tional metamodels (Søndergaard 2003). Physical metamodels are application or problem-

specific metamodels. Their functional form and parameters have a physical interpretation.

Functional metamodels are general-purpose (i.e., generic) functions chosen based on their

analytical tractability. The most common general-purpose metamodel is the use of low-

order polynomials, and particularly of quadratic polynomials (Conn et al. 2009b, Kleij-

nen 2008, Marti 2008). Other general-purpose metamodels include spline models, radial

basis functions and Kriging models (Kleijnen et al. 2010, Wild et al. 2008, Barton and

Meckesheimer 2006).
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The existing metamodels consist of either physical or functional components. Recent

work has proposed a metamodel that is a combination of a functional and a physical

metamodel (Osorio and Bierlaire forthcoming). The functional component ensures asymp-

totic metamodel properties necessary for convergence analysis (such as full linearity (Conn

et al. 2009a)). The physical component is an analytical and differentiable macroscopic

traffic model. It provides a problem-specific analytical approximation of the objective

function, unlike the generic approximation provided by the functional component. The

physical component therefore yields structural information about the problem at hand,

which enables the identification of well performing alternatives (i.e., trial points) with very

small samples (i.e., good short-term algorithmic performance). The physical component

used here is an analytical differentiable queueing network model. This macroscopic traffic

model is less detailed and accurate than the simulator, yet is computationally efficient to

evaluate.

This combined use of functional and physical metamodels allows information from the

detailed, yet inefficient, microscopic simulator to be combined with analytical information

from a more efficient macroscopic model. This leads to an algorithm with a good detail-

tractability trade-off and good short-term performance.

This physical and functional metamodel approach has been used to efficiently address

complex urban transportation problems, such as signal control problems that account for

detailed (also called microscopic) vehicle-specific energy consumption patterns (Osorio

and Nanduri 2012), emissions patterns (Osorio and Nanduri 2013), and reliable signal

control problems that used detailed full distributional travel time estimates provided by

the simulator to improve both average travel times and travel time reliability (Chen et al.

2012).

This approach has been successfully used to control networks with approximately 50

roads, yet is not suitable to address problems for much larger scale networks. This paper

builds upon this existing metamodel SO technique (hereafter referred to as the ini-

tial method), and proposes a metamodel that can efficiently address high-dimensional

simulation-based problems.

3. Methodology
3.1. Metamodel functional form

Recall the general form of the urban transportation problems that we address (Equa-

tion (1)). Since there is no closed-form available for the objective function, f , we use a

metamodel to approximate it. The functional form of the metamodel used in this paper
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is that proposed by Osorio and Bierlaire (forthcoming). It combines a physical and a

functional component. Its functional form is given by:

m(x, y;α,β, q) = αT (x, y; q)+φ(x;β), (2)

where φ (the functional component) is a quadratic polynomial in x with diagonal second-

derivative matrix, T (the physical component) represents the approximation of the objec-

tive function proposed by the analytical macroscopic traffic model, y are endogenous

macroscopic model variables (e.g., queue length distributions), q are exogenous macro-

scopic parameters (e.g., total demand), α and β are parameters of the metamodel. The

metamodel m can be interpreted as a macroscopic approximation of the objective func-

tion provided by T , which is corrected parametrically by both a scaling factor α and a

separable error term φ(x;β). For details regarding the choice of this functional form, we

refer the reader to Osorio and Bierlaire (forthcoming).

In this paper, we use the same functional component as in Osorio and Bierlaire (forth-

coming) (i.e., the quadratic polynomial φ). We propose a novel scalable physical compo-

nent. In Section 3.2 we recall the formulation of the physical component of the initial

metamodel and describe its limitations. We then present the new formulation of the phys-

ical component in Section 3.3.

3.2. Initial queueing network model

The physical component of the initial metamodel is an urban traffic model based on

queueing network theory. It combines ideas from existing traffic models, various national

urban transportation norms, and queueing models. The detailed formulation of the model

is given in Osorio and Bierlaire (2009b) (which is based on the more general queueing

network model of Osorio and Bierlaire (2009a)). We outline here the main ideas of its

formulation.

Each lane of an urban road network is modeled as a queue (and in some cases as a set

of queues). In order to account for the limited physical space that a queue of vehicles may

occupy we resort to finite capacity queueing theory, where there is a finite upper bound on

the length of each queue. Each lane is modeled as a finite capacity M/M/1/k queue. The

network model analytically approximates the queue interactions among adjacent lanes.

Congestion and spillbacks are modeled by what is known in queueing theory as blocking.

This occurs when a queue is full, and thus blocks arrivals from upstream queues at their

current location. This blocking process is described by endogenous variables such as block-

ing probabilities and unblocking rates. The model consists of a set of nonlinear equations

that capture these between-queue interactions.
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In the following notation the index i refers to a given queue.

γi external arrival rate;
λi total arrival rate;
µi service rate;
µ̃i unblocking rate;
µeff
i effective service rate (accounts for both service and eventual blocking);
ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;
Ni total number of vehicles in queue i;
P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;
pij transition probability from queue i to queue j;
Di set of downstream queues of queue i.

The queueing network model is formulated as follows.

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λi = γi +

∑

j
pjiλj(1−P (Nj = kj))

(1−P (Ni = ki))
, (3a)

1

µ̃i

=
∑

j∈Di

λj(1−P (Nj = kj))

λi(1−P (Ni = ki))µeff
j

, (3b)

1

µeff
i

=
1

µi

+P f
i

1

µ̃i

, (3c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii , (3d)

P f
i =

∑

j

pijP (Nj = kj), (3e)

ρi =
λi

µeff
i

. (3f)

Equation (3a) is a flow conservation equation, it relates flow transmission between

upstream and downstream queues. The factor (1−P (Ni = ki)) represents the probability

that queue i is not full (i.e., the queue can receive flow from its upstream queues). If the

queue is full, it cannot receive flow from upstream queues, which may lead to spillbacks.

Equation (3b) defines the rate at which spillbacks at queue i dissipate, µ̃i. Equation (3c)

defines the rate at which queue i dissipates accounting for both spillback and non-spillback

states, µeff
i . It is defined as a function of the service rate of the queue, µi. The latter is

determined by combining ideas from national transportation norms, and is a function,

for instance, of the free flow capacity of the underlying lane. Equation (3d) defines the

probability that a queue is full, i.e., the spillback probability of the underlying lane.

This expression is derived from finite capacity queueing theory (Bocharov et al. 2004).

Equation (3e) defines the probability of a vehicle being blocked while at queue i, i.e., the

probability that a vehicle at the underlying lane is affected by spillback from a downstream

lane. Equation (3f) defines the traffic intensity of a queue, it is also derived from traditional

finite capacity queueing formulae.
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In this model, the exogenous parameters of a given queue are γi, µi, pij and ki. All

other parameters are endogenous. When used to solve a signal control problem, the flow

capacity of the signalized lanes become endogenous, which makes the corresponding service

rates, µi, endogenous. In that case, the exogenous parameters are γi, pij and ki. This is

a stationary model with exogenous traffic assignment (the turning probabilities pij are

exogenous). As described in Section 6, analytical tractable formulations that describe both

traffic dynamics and endogenous assignment are being developed as part of ongoing work.

As described in Section 2, this model has been used to solve signal control problems

for medium-scale networks. However, it is not sufficiently tractable to address large-scale

network problems. For instance, in the case of the Lausanne city network (with over

600 links and 200 intersections), the time needed by a standard nonlinear optimization

algorithm to solve the trust region (TR) subproblem (detailed in Section 4.2) exceeds 20

minutes. Since this TR subproblem is solved at every iteration of the SO algorithm, it is

critical to solve it efficiently.

In this paper, we propose a more tractable and scalable physical component of the

metamodel. It is an approximation of this initial queueing network model. It consists of

a simple system of one linear and two nonlinear equations. In particular, as is detailed in

Section 5.2, the TR subproblem is now solved on average within less than 2 minutes. This

significantly enhances the computational efficiency of the SO algorithm, and allows to

efficiently address more complex high-dimensional constrained transportation problems.

3.3. Highly-tractable queueing network model

We introduce the following two variables:

λeff
i effective arrival rate;

ρeffi effective traffic intensity.

These two new variables are defined by:

λeff
i = λi(1−P (Ni = ki)) (4)

ρeffi =
λeff
i

µeff
i

. (5)

The highly tractable queueing network model is given by:


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


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



λeff
i = γi(1−P (Ni = ki))+

∑

j

pjiλ
eff
j (6a)

ρeffi =
λeff
i

µi

+

(

∑

j∈Di

pijP (Nj = kj)

)(

∑

j∈Di

ρeffj

)

(6b)

P (Ni = ki) =
1− ρeffi

1− (ρeffi )ki+1
(ρeffi )ki . (6c)
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Equation (6a) is obtained directly by inserting Equation (4) into Equation (3a). Equa-

tion (6b) is obtained as follows. Multiply Equation (3b) and (3c), respectively, by λeff
i to

obtain:

λeff
i

µ̃i

=
∑

j∈Di

λeff
j

µeff
j

, (7)

ρeffi =
λeff
i

µi

+P f
i

λeff
i

µ̃i

. (8)

Insert Equation (7) into (8) to obtain:

ρeffi =
λeff
i

µi

+P f
i (
∑

j∈Di

ρeffj ). (9)

Insert the expression of P f
i given by Equation (3e), and Equation (6b) results.

Equation (6c) is an approximation of Equation (3d) which is obtained by replacing the

traffic intensity ρ, by the effective traffic intensity ρeff. That is, we use the expression of

the blocking probability of a finite capacity queue, yet approximate the traffic intensity

with the effective traffic intensity.

Equation (5) defines ρeff and shows that it may underestimate ρ. For queues with light

traffic, we have ρeff ≈ ρ, and the two models will yield similar network performance esti-

mates. For congested links, the scalable approximation may underestimate link congestion.

The proposed model consists of three endogenous variables per queue (λeff
i , ρeffi , P (Ni =

ki)). When using this model to address signal control problems, µi also becomes endoge-

nous. This model is defined by one linear and two nonlinear equations. This formulation

results in increased computational efficiency, enabling us to address a full city-scale micro-

scopic simulation-based optimization problem.

3.4. Example of functional form of T

As described in Section 2, one of the advantages of using a physical component in the

metamodel is to have problem-specific approximations of the objective function. In this

section, we give an example of the functional form of the analytical approximation of the

objective function provided by the queueing model, T (x, y; q). In Section 4, we address a

signal control problem, where the objective is to minimize the expected trip travel time.

The queueing approximation of this expectation is obtained by applying Little’s law (Little

2011, 1961) to the entire network. It is given by:

∑

i
E[Ni]

∑

i
γi(1−P (Ni = ki))

, (10)

where E[Ni] represents the expected number of vehicles in lane i, γi is the rate of vehicles

entering the network via lane i (i.e., the external arrival rate), and P (Ni = ki) is the
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probability that lane i is full (i.e., spillback or blocking probability). The numerator of

Equation (10) represents the expected number of vehicles in the network, whereas the

denominator represents the effective arrival rate to the network. Their ratio yields the

expected time in the network.

The expected number of vehicles on lane i, E[Ni], is given by:

E[Ni] = ρi

(

1

1− ρi
−

(ki +1)ρkii

1− ρki+1
i

)

. (11)

This expression is derived in Appendix A. In the scalable model proposed in this paper,

ρi is approximated by ρeffi in Equation (11).

3.5. SO algorithm

The SO algorithm used in this paper is that of Osorio and Bierlaire (forthcoming). It

is given in Appendix B. It is based on the derivative-free trust region (TR) algorithm

proposed by Conn et al. (2009a). For an introduction to trust region (TR) methods, we

refer the reader to Conn et al. (2000). They summarize the main steps of a TR method

in the Basic trust region algorithm. The derivative-free method proposed by Conn et al.

(2009a) builds upon the Basic trust region algorithm by adding two additional steps:

a model improvement step and a criticality step. This algorithm allows for arbitrary

metamodels to be used and, unlike traditional TR algorithms, it makes no assumptions on

how these metamodels are fitted (interpolation or regression). It is therefore particularly

appealing for the simulation-based context where derivatives are costly to estimate and

where metamodels fitted via regression are more suitable than their interpolated versions.

At a given iteration k of the SO algorithm, it solves a trust region subproblem and

approximates the objective function by the current metamodel mk (defined in Equa-

tion (2)). The metamodel parameters (αk and βk) are fitted via regression based on the

simulated observations collected so far. For a detailed description of the algorithm, see

Osorio and Bierlaire (forthcoming).

4. Traffic signal control problem

This methodology is suitable to address a variety of simulation-based urban transportation

optimization problems. In this section, we evaluate the performance of the methodology

by considering a large-scale network-wide traffic signal control problem.

4.1. Problem formulation

A detailed review of traffic signal control formulations is given in Appendix A of Osorio

(2010). In this paper, we consider a fixed-time strategy. Fixed-time (also called time of day

or pre-timed) strategies are pre-determined based on historical traffic patterns. They yield
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one traffic signal setting for the considered time of day. The traffic signal optimization

problem is solved offline.

In this paper, the signal plans of several intersections are determined jointly. For a given

intersection and a given time interval (e.g., evening peak period), a fixed-time signal plan

is a cyclic (i.e., periodic) plan that is repeated throughout the time interval. The duration

of the cycle is the time required to complete one sequence of signals. The cycle times of

the intersections controlled in the Lausanne network (used in the case study of this paper)

are 80, 90 or 100 seconds.

A phase is defined as a set of traffic streams that are mutually compatible and that

receive identical control. The cycle of a signal plan is divided into a sequence of periods

called stages. Each stage consists of a set of mutually compatible phases that all have

green. The stage sequence is defined such as to separate conflicting traffic movements

at intersections. The cycle may also contain all-red periods, where all streams have red

indications, as well as stages with fixed durations (e.g., for safety reasons). The sum of

the all-red periods and the fixed periods is called the fixed cycle time.

Cycle times, green splits and offsets are the three main signal timing control variables.

The green split corresponds to the ratio of green times (i.e., total duration of a phase) to

cycle time. Offsets are defined as the difference in time between the start of cycles for a

pair of intersections. Offset settings are especially important in coordinating the signals

of adjacent intersections (e.g., to create green waves along arterials or corridors).

In this paper cycle times, offsets and all-red durations are kept constant. The stage

structure is also given, i.e., the set of lanes associated with each stage as well as the

sequence of stages are both known. This is known as a stage-based approach. The decision

variables consist of the endogenous green splits of the different intersections.

To formulate this problem we introduce the following notation:

ci cycle time of intersection i;
di fixed cycle time of intersection i;
eℓ ratio of fixed green time to cycle time of signalized lane ℓ;
s saturation flow rate [veh/h];
x(j) green split of phase j;
xL vector of minimal green splits;
I set of intersection indices;
L set of indices of the signalized lanes;
PI(i) set of endogenous phase indices of intersection i;
PL(ℓ) set of endogenous phase indices of lane ℓ.

The problem is traditionally formulated as follows:

min
x

f(x;p)≡E[F (x;p)] (12)
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subject to

∑

j∈PI (i)

x(j) =
ci − di
ci

, ∀i∈I (13)

x≥ xL. (14)

The decision vector x consists of the green splits for each phase. The objective is to

minimize the expected trip travel time (Equation (12)). The linear constraints (13) link the

green times of the phases with the available (i.e., non-fixed) cycle time for each intersection.

Equation (14) ensures lower bounds for the green splits. These bounds are determined

based on the prevailing transportation norms.

4.2. Trust region subproblem

This section presents the trust region (TR) subproblem that is solved at each iteration of

the SO algorithm. It is a variation of the signal control problem defined in Section 4.1.

At a given iteration k, the SO algorithm considers a metamodel mk(x, y;αk, βk, q), an

iterate xk (point considered to have best performance so far) and a TR radius ∆k. The

TR subproblem is formulated as follows:

min
x,y

mk = αkT (x, y; q)+φ(x;βk) (15)

subject to

∑

j∈PI (i)

x(j) =
ci − di
ci

∀i∈I (16)

h(x, y; q) = 0 (17)

µℓ −
∑

j∈PL(ℓ)

xjs= eℓs, ∀ℓ∈L (18)

‖x−xk‖2 ≤∆k (19)

y≥ 0 (20)

x≥ xL. (21)

The TR subproblem approximates the objective functions by the metamodel at itera-

tion k, mk. It contains the constraints of the signal control problem, and includes three

additional constraints. Equations (16) and (21) are the signal control constraints, they

correspond to Equations (13) and (14). The function h of Equation (17) represents the

queueing network model (Equations (6a)-(6c)). Equation (18) relates the green splits of

a phase to the flow capacity of the underlying lanes (i.e., the service rate of the queues).

Constraint (19) is the trust region constraint. The endogenous variables of the queueing

model are subject to positivity constraints (Equation (20)). Thus, the TR subproblem

consists of a nonlinear objective function subject to nonlinear and linear equalities, a

nonlinear inequality and bound constraints.



Osorio and Chong: Large-scale simulation-based transportation optimization

14 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Implementation notes This problem is solved with the Matlab routine for constrained

nonlinear problems, fmincon, and its sequential quadratic programming method (Coleman

and Li 1996, 1994). We set the tolerance for relative change in the objective function

to 10−3 and the tolerance for the maximum constraint violation to 10−2. For further

details on the TR subproblem formulation and its implementation, see Osorio and Bierlaire

(forthcoming).

We implement the lower bound constraints of Equation (21) as nonlinear equations by

introducing a new variable g and implementing Equation (21) as:

x= xL + g2. (22)

We do not enforce the positivity of all endogenous variables (Equation (20)) yet check a

posteriori that all endogenous variables are positive. In our numerous experiments, we have

not encountered a case with a negative value. We insert Equation (18) into Equation (6b),

and implement the two constraints as a single constraint.

For a problem with n endogenous phases, ℓ lanes, b signalized intersections, where each

lane is modeled by a single queue (i.e., we have ℓ queues), there are 3ℓ+ n endogenous

variables, which consist of 3 endogenous queueing variables per lane, and the green splits

for each phase. There are ℓ linear equations, 2ℓ+ b nonlinear equations and 1 nonlinear

inequality (trust-region constraint).

5. Empirical Analysis
5.1. Lausanne city network

We evaluate the scalability and short-term algorithmic performance of this framework by

solving a large-scale signal control problem. We solve a problem for the entire Swiss city

of Lausanne. The map is displayed in Figure 2, the considered area is delimited in white.

We use a microscopic traffic simulation model of the Lausanne city center developed by

Dumont and Bert (2006). It is implemented with the Aimsun simulator (TSS 2008), and

is calibrated for evening peak period demand. Details regarding this Lausanne network

are given in Osorio and Bierlaire (2009b). In this paper, the considered demand scenario

consists of the first hour of peak period traffic, 17h-18h.

The road network consists of 603 links and 231 intersections. The signals of 17 intersec-

tions are controlled in this problem. The modeled road network is displayed in Figure 3,

where the 17 intersections are depicted as filled squares. This leads to a total of 99 endoge-

nous phase variables (i.e., the dimension of decision vector is 99).

The queueing model consists of 902 queues. The TR subproblem consists of 2805 endoge-

nous variables with 1821 nonlinear equality constraints, 902 linear equality constraints.
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Figure 2 Lausanne city road network (adapted from Dumont and Bert (2006))

Figure 3 Lausanne network model

The lower bounds of the green splits (Equation (14)) are set to 4 seconds according to the

Swiss transportation norm (VSS 1992).

Performing network-wide signal control of networks with around 70 links and 16 inter-

sections is currently considered large-scale in the field of signal control, as illustrated by

recent studies (Aboudolas et al. 2010, 2007). Thus, the simulation-based signal control
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problem of this paper is a challenging large-scale network-wide signal control problem that

considers a congested network with a complex topology.

This problem is considered large-scale for existing unconstrained derivative-free algo-

rithms, where the most recent methods are limited to problems with around 200 variables

(Conn et al. 2009b), not to mention the added complexity of nonlinear constraints and

stochasticity. Given the complexity of the underlying simulator, this problem is also con-

sidered complex for simulation-based optimization algorithms.

5.2. Numerical results

We compare the performance of the proposed metamodel with a traditional metamodel

method that consists only of a functional component, which is a quadratic polynomial

with diagonal second derivative matrix (i.e., the metamodel consists of φ, defined in Equa-

tion (2)). In order to compare the two methods, we consider a tight computational budget,

which is defined as a maximum of 150 simulation runs that can be carried out.

We consider three different initial points (i.e., signal plans). These points are uniformly

drawn from the feasible space defined by Equations (13) and (14). For each initial point,

we run the SO algorithm five times, each time allowing for 150 simulation runs. Thus, for

each method and each initial point, we derive five “optimal” (or proposed) signal plans.

We then use the simulator to evaluate in detail the performance of the proposed signal

plans. For each proposed plan signal, we run 50 replications. We compare the empirical

cumulative distribution function (cdf) of the average travel times obtained from these 50

replications.

Each plot of Figure 4 considers a different randomly drawn initial point. Each curve

of each plot displays the empirical cdf’s of a given signal plan. The solid thick curve

corresponds to the empirical cdf of the initial signal plan (denoted x0), the dashed curves

(resp. solid thin curves) are the empirical cdf’s of signal plans proposed by the traditional

metamodel, i.e., the polynomial φ, (resp. the proposed metamodel, m).

Figure 4(a) indicates that all five plans derived by both the proposed metamodel and

the traditional metamodel yield improved performance when compared to the initial signal

plan. All five plans derived by the proposed metamodel also have better performance

compared to those proposed by the traditional metamodel.

Figure 4(b) indicates that all five signal plans derived by the proposed metamodel

yield improved performance when compared to the initial plan. Four of them outperform

all five plans derived by the traditional metamodel. Two of the signal plans derived by

the traditional metamodel outperform the initial plan and the other three have similar

performance as the initial plan.
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Figure 4: Empirical cdf’s of the average travel times considering initial random signal plans and allowing for 150 simulation runs



Osorio and Chong: Large-scale simulation-based transportation optimization

18 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

In Figure 4(c), all five plans derived by the proposed metamodel yield improvement

compared to the initial plan, three of them outperform all five signal plans proposed by

the traditional metamodel. Two of the signal plans proposed by the traditional metamodel

have worse performance than the initial signal plan, one has similar performance and two

have improved performance.

For all three initial points, the proposed method systematically derives signal plans with

improved performance when compared to the initial plan, and most often, when compared

to the plans obtained from the traditional metamodel. Additionally, the plans derived by

the proposed method have good and very similar performance across all SO runs and all

initial points, whereas the performance of the plans proposed by the traditional metamodel

varies depending on both the initial point and the SO run. This illustrates the robustness

of the proposed method to both initial points and to the stochastics of the simulator.

We evaluate the performance of the proposed approach for larger sample sizes. We run

the SO algorithm once, and allow for a total of 1500 simulation runs. We choose two

random initial signal plans. We evaluate the performance of the signal plans proposed at

sample sizes 50, 150, 200, 400, 600, 800, 1000 and 1500. We evaluate their performance

just as before, i.e., for a given proposed plan we run 50 replications of the simulator and

plot the empirical cdf (over these 50 replications) of the average travel times.

Figure 5(a) displays the corresponding cdf’s of the initial signal plan used in Figure

4(a). The proposed approach identifies a signal plan with excellent performance already at

sample size 50 (cdf labeled m 50). The signal plan identified as of sample size 150 remains

the best up to sample size 1500. It has slightly improved performance, and in particular

reduced variability, compared to that of sample size 50.

The performance of the signal plans proposed by the traditional metamodel (dashed

curves) improves as the sample size increases. The traditional metamodel requires a much

larger sample size to identify signal plans with good performance.

We carry out a paired t-test to evaluate whether the difference in performance of the

signal plans proposed by each method at sample size 1500 is statistically significant.

We assume that the observed average travel times arise from a normal distribution with

common but unknown variance. The null hypothesis assumes that the expected travel time

is the same for both methods, whereas the alternative hypothesis assumes that they differ.

The confidence level is 0.05, and there are 49 degrees of freedom. The sample average

and sample standard deviation of our proposed signal plan (resp. that proposed by the

polynomial metamodel) are 5.73 minutes and 0.51 minutes (resp. 5.95 minutes and 0.47

minutes). The critical value of the test is 1.96. The difference is statistically significant

(t-statistic of -2.38, p-value of 0.02).
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Figure 5 Empirical cdf’s of the average travel times considering initial random signal plans and allowing

for 1500 simulation runs

Thus, at sample size 1500 the proposed method still outperforms its traditional coun-

terpart. That is, the signal plan identified by the proposed method as of sample size 150

outperforms that identified by the traditional method at sample size 1500.

Figure 5(b) displays the results considering the initial plan used in Figure 4(b). Simi-

larly, the proposed approach identifies a signal plan with an excellent performance even at

sample size 50. The signal plan with best performance derived by the proposed metamodel
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is obtained at sample size 150 and remains the same until sample size 1500. It has similar

performance to that of sample size 50.

For sample sizes smaller than 400 the traditional metamodel yields signal plans with

worse performance than the initial plan. Their performance significantly improve with

increasing sample size until size 400. The performance of the derived signal plans with

samples larger than 400 are similar. The signal plans proposed by the traditional meta-

model method for sample sizes 600 to 1500 are the same.

We carry out the same paired t-test as before in order to evaluate whether the differ-

ence in performance of the signal plans proposed by each method at sample size 1500 is

statistically significant. The sample average and sample standard deviation of our pro-

posed signal plan (resp. that proposed by the polynomial metamodel) are 6.25 minutes

and 0.73 minutes (resp. 6.16 minutes and 0.50 minutes). The difference is not statistically

significant (t-statistic of 0.72, p-value of 0.48).

Figure 6 displays two instances of the Lausanne city map. The links are colored based

on average link travel times (averaged over the 50 replications). The left (resp. right) map

considers the average link travel times for the initial (resp. proposed) signal plan. Here the

proposed plan is that obtained with the initial plan and sample size of 150 of Figure 5(a).

Green links have average travel times below 40 seconds, yellow links have travel times

between 40 and 80 seconds, while red links have travel times greater than 80 seconds. This

figure shows how the proposed plan yields city-wide travel time improvements.

At each iteration of the SO algorithm, the two most computationally expensive tasks are

the evaluation of the simulator as well as the solution of the trust-region subproblem (i.e.,

call of the fmincon routine). We consider the first initial plan (used in Figures 4(a) and

5(a)), and account for all 5 runs. Figure 7 displays the cdf of the simulation runs, and the

TR subproblem runs. On average one simulation run takes 1.3 minutes, it takes 1.9 minutes

to solve the TR subproblem. The experiments were run on a standard laptop (processor:

2.70GHz and 4 GB of RAM). Thus, the metamodel can be used to efficiently solve the TR

subproblem at each iteration of the SO algorithm. Additionally, the structural information

that it provides through the queueing network model allows the SO algorithm to identify

signal plans with excellent performance under very tight computational budgets.

5.3. Synchro comparison

In this section we compare the performance of the signal plans derived by our approach to

those derived by the mainstream, commercial, and widely used, traffic signal control soft-

ware Synchro (Trafficware 2011, Synchro 8). Synchro is a traffic signal control optimization

software based on a macroscopic, deterministic and local traffic model. It is widely used
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Figure 6: Average link travel times using the initial signal plan (left map) and the signal plan proposed by the SO approach (right map).

The averages (in seconds) are taken over 50 simulation replications.
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Figure 7 Simulation and trust region subproblem run times

across the US (NYCDOT 2012, Riniker et al. 2009, Abdel-Rahim and Dixon 2007, ATAC

2003). For details on the split optimization technique within Synchro, we refer the reader

to Chapter 14 of Trafficware (2011).

The Synchro version used does not allow for any fixed (i.e., exogenous) phase durations.

Hence, we solve a signal control problem without fixed phases. For each intersection we

take as cycle time its available (i.e., non-fixed) cycle time, ci−di. The problem formulation

is given by Equations (12)-(14) and by replacing the right-hand side of Equation (13)

by (ci − di)/(ci − di), which equals 1. Synchro and our proposed SO method address this

same problem. The corresponding TR subproblem is given by Equations (15)-(21), and

replacing the right-hand side of (16) by 1 and the right-hand side of (18) by zero.

The Lausanne network is coded in Synchro. All signal plan information needed for

Synchro (e.g., phase structure) is obtained from the existing Lausanne signal plan. The

minimum splits are set to 4 seconds as in Section 5.1. Lane saturation flows (denoted s

in Section 4.1) are set to 1800 vehicles per hour, following Swiss transportation norms.

Synchro also needs, as inputs, estimates of prevailing movement flows. This was also needed

when calibrating the analytical queueing model (e.g., to obtain turning probabilities).

Hence, we use the same estimates as those provided to the queueing model. These are

obtained from the simulator using the existing Lausanne signal plan.

To initialize the proposed SO approach, we consider the same three random initial

signal plans as used in Figure 4. For each initial plan, we run the SO algorithm once, each

time allowing for 150 simulation runs. To evaluate the performance of a plan, we use the

simulator and proceed as described in Section 5.2.
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Figure 8 Emprical cdf’s of the average travel times of the signal plans proposed by the SO approach

and by Synchro.

Figure 8 presents the corresponding cdf curves. The three solid thin curves correspond to

the plans derived by our proposed metamodel approach (denoted m). The dashed curves

correspond to the three random initial signal plans (denoted x0). The solid thick curve

corresponds to the Synchro plan. All three plans derived by the purposed metamodel

approach yield improved performance when compared to all three initial plans. All three

plans derived by the SO approach also outperform the plan proposed by Synchro. The

Synchro plan has similar performance to two of the three randomly drawn signal plans.

6. Conclusions

This paper proposes a metamodel for large-scale simulation-based urban transportation

optimization problems. It is a computationally efficient technique that identifies trial

points (e.g., signal plans) with improved performance under tight computational budgets.

This metamodel SO technique is based on the use of a highly tractable metamodel that

combines a general-purpose component (a quadratic polynomial) with a physical compo-

nent (a highly-tractable analytical queueing network model).

We evaluate the performance of this approach by addressing a large-scale network-

wide signal control problem for the Swiss city of Lausanne. This problem considers a

congested network (evening peak period demand) with an intricate topology. We compare

the performance of the proposed metamodel to that of a traditional metamodel. The

proposed method identifies signal plans that improve the distribution of average travel

times compared to both the initial signal plans, and most often, to the signal plans derived



Osorio and Chong: Large-scale simulation-based transportation optimization

24 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

by the traditional method. This network-wide signal control problem is considered high-

dimensional for SO algorithms, for derivative-free algorithms as well as for signal control

algorithms. We also compare the performance of the proposed approach to that of a

widely-used signal control software, Synchro. All proposed signal plans outperform the

plan derived by Synchro.

In this paper, random uniformly drawn signal plans are used as initial points for the

SO algorithm. The results illustrate the robustness of the proposed metamodel method

to initial points. This allows practitioners to use the method to address a variety of signal

control problems without requiring any field-knowledge to initialize the method.

As part of ongoing research, we are investigating the use of the proposed method

to address a variety of generally constrained simulation-based transportation problems,

including microscopic model calibration, multi-modal traffic management, and multi-

modal network design problems. We are also developing SO algorithms with improved

short-term performance by using information from analytical probabilistic traffic models,

such as the queueing network model used in this paper, to inform both sampling strategies

and statistical tests.

We are also investigating novel analytical traffic model formulations with increased

accuracy. The model used in this manuscript is a stationary model, we are currently

working on a time-dependent formulation based on the use of transient finite capacity

queueing theory. Ongoing work is also developing a formulation with endogenous analytical

traffic assignment. The main challenge in this analytical work is to derive a differentiable

and highly tractable formulation suitable for large-scale simulation-based optimization.
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Appendix A: Derivation of E[N ]

In this section we omit the index i that refers to a given queue. E[N ] is defined as:

E[N ] =
k
∑

n=0

nP (N = n). (23)

The stationary probabilities for each queue, P (N = n), are given in Bocharov et al. (2004) by:

P (N = n) =
1− ρ

1− ρk+1
ρn. (24)

Inserting Equation (24) into (23), and then rearranging the terms yields

E[N ] =

k
∑

n=0

n
1− ρ

1− ρk+1
ρn, (25)

=

k
∑

n=1

n
1− ρ

1− ρk+1
ρn, (26)

=
1− ρ

1− ρk+1

k
∑

n=1

nρn, (27)

=
1− ρ

1− ρk+1
ρ

k
∑

n=1

nρn−1. (28)

We then derive an expression for the last summation as follows. For a geometric series, such that

ρ 6= 1, we have:
k
∑

n=0

ρn =
ρk+1 − 1

ρ− 1
. (29)
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We differentiate this formula with respect to ρ and obtain:

k
∑

n=1

nρn−1 =
1− ρk+1

(1− ρ)
2 −

(k+1)ρk

1− ρ
. (30)

Inserting the expression of Equation (30) into Equation (28), and rearranging the terms gives:

E[N ] =
1− ρ

1− ρk+1
ρ

(

1− ρk+1

(1− ρ)
2 −

(k+1)ρk

1− ρ

)

(31)

= ρ

(

1

1− ρ
−

(k+1)ρk

1− ρk+1

)

. (32)

Appendix B: SO algorithm

This SO algorithm is formulated in detail in Osorio and Bierlaire (forthcoming) and is based on

the derivative-free trust region algorithm of Conn et al. (2009a). The parameters of the algorithm

are set according to the values in Osorio and Bierlaire (forthcoming).

0. Initialization.

Define for a given iteration k: mk(x, y;αk, βk, q) as the metamodel (denoted hereafter as mk(x)),

xk as the iterate, ∆k as the trust region radius, νk = (αk, βk) as the vector of parameters of mk,

nk as the total number of simulation runs carried out up until and including iteration k, uk as the

number of successive trial points rejected, εk as the measure of stationarity (norm of the derivative

of the Lagrangian function of the trust region (TR) subproblem with regards to the endogenous

variables) evaluated at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 < γ < 1 < γinc, εc > 0,

0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N
∗. Set the total number of simulation runs permitted (across all

points) nmax, this determines the computational budget. Set the number of simulation replications

per point r̃ (here we use r̃= 1).

Set k= 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Given the initial point x0, compute fA(x0) (analytical approximation of Equation (12)) and f̂(x0)

(simulated estimate of Equation (12)), fit an initial model m0 (i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode.

2. Step calculation. Compute a step sk that reduces the model mk and such that xk + sk (the

trial point) is in the trust region (i.e. approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk +1.

Include the new observation in the set of sampled points (nk = nk + r̃), and fit the new model

mk+1.

4. Model improvement. Compute τk+1 =
‖νk+1−νk‖

‖νk‖
. If τk+1 < τ̄ , then improve the model by

simulating the performance of a new point x, which is uniformly drawn from the feasible space.

Evaluate fA and f̂ at x. Include this new observation in the set of sampled points (nk = nk + r̃).

Update mk+1.
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5. Trust region radius update.

∆k+1 =







min{γinc∆k,∆max} if ρk > η1
max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū
∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k= k+1.

If nk <nmax, then go to Step 1. Otherwise, stop.


