Concave-Convex critical problems for the spectral fractional Laplacian with mixed boundary conditions [article]

Alejandro Ortega
2022
In this work we study the existence of solutions to the following critical fractional problem with concave-convex nonlinearities, \begin{equation*} \left \{ \begin{array}{l} (-Δ)^su=λu^q+u^{2_s^*-1},\ u>0\quad\text{in }Ω,\\[3pt] \mkern+51mu u=0\quad\text{on } Σ_{\mathcal{D}}\\ \mkern+36mu \displaystyle \frac{\partial u}{\partial ν}=0\quad\text{on } Σ_{\mathcal{N}} \end{array} \right. \end{equation*} where $Ω\subset\mathbb{R}^N$ is a smooth bounded domain, $\frac{1}{2}0$, $ν$ is the outwards
more » ... al to $\partialΩ$, $Σ_{\mathcal{D}}$, $Σ_{\mathcal{N}}$ are smooth $(N-1)$-dimensional submanifolds of $\partialΩ$ such that $Σ_{\mathcal{D}}\cupΣ_{\mathcal{N}}=\partialΩ$, $Σ_{\mathcal{D}}\capΣ_{\mathcal{N}}=\emptyset$, and $Σ_{\mathcal{D}}\cap\overlineΣ_{\mathcal{N}}=Γ$ is a smooth $(N-2)$-dimensional submanifold of $\partialΩ$.\newline In particular, we will prove that, for the sublinear case $00$. We will also prove that solutions are bounded.
doi:10.48550/arxiv.2201.13154 fatcat:7izs4bzexrharhujrqnsqlhe4e