
OPTIMUS: OPTIMIZED MATRIX MULTIPLICATION STRUCTURE FOR
TRANSFORMER NEURAL NETWORK ACCELERATOR

Junki Park 1 Hyunsung Yoon 1 Daehyun Ahn 1 Jungwook Choi 2 Jae-Joon Kim 1

ABSTRACT
We present a high-performance Transformer neural network inference accelerator named OPTIMUS. OPTIMUS
has several features for performance enhancement such as the redundant computation skipping method to accelerate
the decoding process and the Set-Associative RCSC (SA-RCSC) sparse matrix format to maintain high utilization
even when large number of MACs are used in hardware. OPTIMUS also has a flexible hardware architecture
to support diverse matrix multiplications and it keeps all the intermediate computation values fully local and
completely eliminate the DRAM access to achieve exceptionally fast single batch inference. It also reduces the
data transfer overhead by carefully matching the data compute and load cycles. The simulation using the WMT15
(EN-DE) dataset shows that latency of OPTIMUS is 41.62×, 24.23×, 16.01× smaller than that of Intel(R) i7
6900K CPU, NVIDIA Titan Xp GPU, and the baseline custom hardware, respectively. In addition, the throughput
of OPTIMUS is 43.35×, 25.45× and 19.00× higher and the energy efficiency of OPTIMUS is 2393.85×, 1464×
and 19.01× better than that of CPU, GPU and the baseline custom hardware, respectively.

1 INTRODUCTION

In recent years, neural machine translation based on deep
learning has been widely used. Recurrent neural network
(RNN), and long short-term memory (LSTM) have been
popular choices for machine translation (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015). However,
RNN/LSTM are known to have some problems; it is hard to
parallelize the computation due to sequential characteristics
(Wu et al., 2016a) and the accuracy drops when the input
sentence is very long (Cho et al., 2014). The attention
mechanism improves the accuracy by allowing the decoding
process to focus on the input part which is the most relevant
to the current decoding step (Bahdanau et al., 2015). In
particular, the Transformer neural network which consists
of attention mechanisms only is known to have much more
parallelism and improved translation quality (Vaswani et al.,
2017).

While various inference hardware accelerators for RNN
and LSTM have been proposed (Han et al., 2017; Gao
et al., 2018; Wang et al., 2018; Park et al., 2018; Park et al.,
2019; Cao et al., 2019), there is a lack of research on hard-

1Department of Creative IT Engineering, Pohang University of
Science and Technology (POSTECH), Pohang, Republic of Korea
2Department of Electronics and Computer Engineering, Hanyang
University, Seoul, Republic of Korea. Correspondence to: Jae-
Joon Kim <jaejoon@postech.ac.kr>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

ware to accelerate the inference of the Transformer despite
having better performance than RNN and LSTM. There
are several challenges in designing a transformer inference
engine. First, the overhead of DRAM access is large be-
cause of the large amount of data. A well-known technique
called pruning can be applied to reduce the memory require-
ment (Han et al., 2015a; 2017). Second, when large number
of multiplier and accumulators (MAC) are embedded in the
accelerator to increase the parallelism and the performance,
MAC utilization is reduced. This problem is exacerbated
when the dense weight matrix becomes sparse after pruning.
Third, the computation flow of encoding and decoding in
the Transformer is very different and the excessive com-
putational overhead in decoding should be addressed. In
the encoding process, all the word vectors in a sentence are
computed in parallel as a matrix form. However, only one
word vector is translated for each decoding iteration. Since
all previously decoded word vectors need to be used as an
input to the decoder at the next decoding step, the amount
of computation increases quadratically during the iterations.

This paper presents a high-performance and flexible hard-
ware architecture, OPTIMUS, for the transformer algorithm
inference. The main contributions of the paper can be sum-
marized as follows:

1. We analyze the computation process of the Trans-
former network and improve the performance by skip-
ping redundant computations. It is shown that sequential
generation of words in the Transformer decoder is the bot-
tleneck in terms of performance and skipping redundant

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

i_gate/h0

w
1,1

w
0,2

w
1,2

w
0,0

w
0,5

w
0,6

w
1,7

w
1,9

w
0,10

w
1,10

w
1,12

w
0,13

w
0,15

Step1: count the number of nonzero elements in each

row to analyze the computational load

c_gate/h1 f_gate/h2 o_gate/h3

 Weight Matrix

Rearranged Weight Matrix

Step2: evenly distribute computation loads to PEs

Step3: rearranges the matrix rows so that the PE

index can be extracted by a simple decoding (modulo

operation).

Value

Row_id

w
0,0

w
1,12

w
1,1

w
0,5

w
1,9

w
0,13

w
0,2

w
1,2

w
0,6

w
0,10

w
1,10

w
1,7

w
0,15

0 1 1 0 1 0 0 1 0 0 1 1 0

Conventional RCSC Format

Step4

Col_id

Col_len 1 0 0 1 1 1 1 1 2 1 2 0 0

0 4 8 12 1 5 9 13 2 6 10 14 3

1 0 1

7 11 15Col_id

Col_len

Step5: performs a network transformation so that the

dot product sequence changed by Step 3 does not

affect the result

Figure 1. The process of generating the conventional RCSC format.
It solves the problems of load imbalance and input load miss caused
by a sparse matrix.

computations reduces the overhead significantly. We also
show that skipping redundant computations is much more
effective in custom hardware design than in GPU.

2. We propose a Set-Associative RCSC (SA-RCSC) for-
mat to enable large-scale MACs to maintain high utilization.
The proposed sparse matrix format significantly reduces the
input miss rate by allowing multiple PEs to handle a matrix
row. As a result, the MAC utilization is improved by ∼ 2X
compared to the conventional RCSC format case.

3. We design the OPTIMUS, a custom hardware accel-
erator for the Transformer neural network which has a
flexibility to support various types of matrix multiplications.
While it outperforms generic computing platforms by sig-
nificant margin in general, OPTIMUS shows a particularly
good performance for a single batch inference by keeping
all the intermediate computation values fully local and elim-
inating DRAM access. It also has an optimized control flow
to hide the data transfer overhead from the computation.

2 BACKGROUND AND RELATED WORK

2.1 Sparse Neural Machine Translation

Neural machine translation (NMT) is to map a sequence
of words in one language to one in another language us-
ing a neural network based sequence to sequence model.
In general, the sequence to sequence model consists of
two parts, encoder and decoder, where encoder extracts

the time-varying feature of the input sentence and decoder
exploits it to predict a sentence, a word at a time. There
have been various approaches for constructing encoder and
decoder. LSTM-based layer structures such as Google’s
Neural Machine Translation (Wu et al., 2016b) have been
popular for their superior translation performance, but they
suffer restricted parallelism inherent in LSTM computation.
Recently, a network based primarily on the attention mech-
anism, the Transformer (Vaswani et al., 2017), has been
introduced to increase parallelism in computation.

The state-of-the-art NMT models are often composed of
multiple layers with large weight matrices. Therefore,
model compression such as pruning (Han et al., 2016; 2017)
is commonly used to alleviate the memory access overhead
for loading weights. After weight elements with small im-
portance are pruned to zero, a dense matrix becomes sparse.
To eliminate the overhead of fetching unnecessary zero ele-
ments, a pruned weight is stored using a sparse matrix for-
mat such as a compressed sparse column (CSC) format (Han
et al., 2017), which consists of the non-zero values, row in-
dices and column pointers of non-zero elements.

However, two major problems arise when the CSC format
is used for the sparse matrix computation in the custom
hardware accelerators. First, since the computation load is
unevenly assigned to each PE, the overall PE utilization is
reduced. Second, since the input vector element is loaded
from the input buffer in irregular access pattern, the miss
rate of the input is high. If the corresponding element is not
loaded from the input buffer due to a miss, the PE is stalled
until the corresponding input element is loaded. There have
been several studies to solve these load imbalance problem
and input load miss problem (Han et al., 2017; Park et al.,
2018; Rizakis et al., 2018; Park et al., 2019). Among them,
only the rearranged compressed sparse column (RCSC) for-
mat proposed in (Park et al., 2019) addresses both issues.

2.2 Rearranged Compressed Sparse Column Format
(RCSC)

The RCSC format (Park et al., 2019) utilizes the character-
istics of LSTM to improve the hit rate of the input vector in
the local buffer as well as balancing the computation loads
between PEs. This format was introduced as a sparse matrix
format targeted for LSTM, but is applicable to all networks
in which an input vector is multiplied to multiple sparse
weight matrices.

The RCSC format is generated through a five-step process
(Fig. 1) (Park et al., 2019). The first step (Step 1) is to
analyze the computation load for each PE by counting the
number of nonzero elements in each row. The second step
(Step 2) is to assign a PE for each row. The computation
load is evenly distributed to each PE in this step. The third
step (Step 3) is to sort the matrix rows in circular order based

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

I love youTRANSFORMER

seq

to
seq

Linear & Softmax

Multi-Head

Attention

Feed

Forward

Encoder

Add & Layer Norm

Add & Layer Norm

dmodel tE

dmodel tE

x 6

Masked Multi-

Head Attention

Multi-Head

Attention

Add & Layer Norm

Add & Layer Norm

(dmodel [1,2,3 …])

Feed

Forward

Decoder

Add & Layer Norm

dmodel t

M(dmodel [1,2,3 …])

E (dmodel x tE)

Embedding &

Positional Encoding

Embedding &

Positional Encoding

x 6
To Multi-Head

Attention of Decoder

ich liebe dich

E (dmodel x tE)

Figure 2. Model architecture of the Transformer.

on the PE index assigned to compute each row. In Step 4,
the first columns of weight matrices for the 4 LSTM gates
are encoded before the second columns are encoded. This
encoding order increases the probability of having non-zero
weight values in adjacent columns. In the Transformer archi-
tecture, a similar approach can be applied to the multi-head
attention case, in which an input is multiplied by multiple
weight matrices. The fifth step (Step 5) is to transform the
weight matrix so that rearrangement does not affect the out-
come. How the RCSC format is applied to the Transformer
is described in detail in Section 5.

2.3 Transformer Neural Network

The Transformer is one of the most popular neural machine
translation methods thanks to its superior performance and
the improved parallelism. Yet there is limited study on its
computation patterns to design customized accelerators. In
this section, we provide a brief explanation of the com-
putational characteristic of the Transformer, with the key
computations summarized in Table 1. (We ask readers to
refer Appendix A for more details.)

The Transformer has the form of encoder-decoder (Fig. 2).
One sentence composed of tE words is represented by a
dmodel × tE matrix when the embedding and positional
encoding are finished. The matrix of these symbol repre-
sentations is computed over six encoder layers. When the
encoding is finished, the output containing the encoding
information becomes a key-value pair of the multi-head at-
tention in the decoder layers. While a whole input sentence
is processed in parallel in the encoding layers, decoding of
an output sentence is done word by word as the decoding
of each word requires the previously decoded words as the
input. Thus, decoding for an encoded sentence requires
repeated computations of all decoder layers. The output
from each decoding iteration is the probability of the word

Table 1. The Computation Type of the Transformer

1. EMBEDDING AND POSITIONAL ENCODING

EM/PE E = Embedding(X) + PE(X)

2. MULTI-HEAD ATTENTION

COM1 [Q,K, V] = [WQ,WK ,WV] · Y WEIGHT(sM)
COM2 P = KT ·Q WEIGHT(dM)
COM3 S = Softmax(P/

√
dk)

COM4 Z0−7 = V · S WEIGHT(dM)
COM5 Z =WO · Concat(Z0−7) WEIGHT(sM)

3. RESIDUAL ADDITION AND LAYER NORMALIZATION

LN Z = γNorm(Y + Z) + β

4. POSITION-WISE FEED FORWARD

FF1 Z = ReLU(WF1 · Z + bF1) WEIGHT(sM)
FF2 Z =WF2 · Z + bF2 WEIGHT(sM)

following the previous word. This process is repeated until
the end of the sentence (EOS) is decoded.

Here we briefly explain the computation patterns in the
Transformer. Each encoder layer is composed of two sub-
layers: multi-head self attention layer and position-wise
fully-connected feed forward layer. Each decoder layer
has one more sub-layer: masked multi-head attention. The
masking ensures that the prediction of output word depends
on the previous output words only. All these layers are
followed by the residual connection and layer normalization.

Multi-head attention is the structure to measure the relation-
ship among words in the sentence. This process is divided
into five computations (COM1∼5) in Table 1. COM1 is a
matrix-matrix multiplication that computes query (Q), key
(K), and value (V). COM2 is to compute the score which
represents how relevant each word is to other words. COM3
is to scale down the value in order to stabilize gradients
during training (Vaswani et al., 2017). COM4 is to multiply
the result of COM3 by value (V). COM5 is to concatenate
the results (Z0 - Z7) of each head and multiply the concate-
nated results by the weight matrix (WO) to mix them. In the
position-wise feed forward network of each layer, two linear
transformations are executed, which the first one involves
Rectified Linear Unit (ReLU) activation. Residual addition
and layer normalization are inserted after each (masked)
multi-head attention and feed forward network.

3 CHALLENGES FOR TRANSFORMER
ACCELERATION

3.1 Limited Parallelism in Decoder

In the Transformer, the computation pattern in the encoding
stage is vastly different from the decoding stage. In the
encoding stage, all the words in an input can be processed in
parallel thanks to the attention-based layer structure – there
is no dependency via hidden states across the time-steps

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

32 60

Number of Words
18 46

N
o

rm
a
li
z
e

d
 R

u
n

-t
im

e

0

Encoding

(a) (b)

GPU

CPU

Decoding

GPU

CPU

1

2

3

4

5

6

0

5

10

20

25

30

40

4 32 6018 464

15

35

Figure 3. The CPU and GPU processing time for different numbers
of words. (a) In encoding process, all words are computed in
parallel. (b) In decoding process, word is sequentially decoded
one by one.

in encoder. Therefore, one can exploit parallelism in the
time-step dimension to accelerate the processing speed. For
example, one can stack word vectors into an input matrix
and employ matrix-matrix multiplication to reuse weight
matrix and perform computation in parallel across the time-
step. Since the decoder shares the similar layer structure
with the encoder, there is no hidden state dependency in it.
However, the decoder still suffers limited parallelism since
in the decoding stage the computation for the prediction at
one time-step depends on the prediction of all the previous
time-steps. Such dependency requires a feedback structure
in the computation along the time-step dimension, leading
to repetitive load of weight for each time-step and slow
speed even with the parallel processing units.

The challenge of the limited parallelism in the decoding
stage is demonstrated in Fig. 3, where the processing time
for the encoding and decoding stages is compared for CPU
(multi-thread) and GPU. In the encoding stage, the process-
ing time increases as the sentence length grows for CPU
while it is almost constant for GPU. This implies that the
amount of computation needed for more number of words
is fully parallelized using GPU once the weight is loaded.
Therefore, GPU can achieve high speedup over CPU when
encoding long sentences. In contrast, the speedup of GPU
over CPU is much lower in the decoding stage. This indi-
cates that the overhead of repetitive load of weight due to
the limited parallelism in decoder shows up as the number
of words increases and limits the effectiveness of the GPU
implementation.

3.2 Low MAC Utilization

In real-time applications, latency is a very important design
specification. For example, when the machine translation
is applied to the simultaneous interpretation, the translation
latency of each sentence (batch size = 1) must be very short.
On the other hand, when multiple users perform translations
(batch size > 1) via a server at the same time, throughput
for multiple batches becomes an important specification.
In summary, reducing latency when processing a single
batch and increasing throughput when processing multiple
batches are one of the key design issues in accelerator design.

32 128 256 512

M
A

C
 U

ti
li

z
a
ti

o
n

 [
%

]

40

50

70

80

100

Number of MACs
1024

30

CSC RCSC

64

- 35%
60

90

Figure 4. Average MAC utilization for Transformer. The MAC
utilization degrades significantly as the number of MAC increases
in both CSC and RCSC formats.

In order to improve latency and throughput, accelerators
need to have large number of MACs. However, as the
number of MAC increases, the load imbalance and input
load miss problems caused by the sparse matrix become
more serious. Although the RCSC format mitigates these
problems somewhat, low MAC utilization still limits the
maximum performance in hardware accelerator when many
MACs are used (Fig. 4). This paper proposes an extension
to the RCSC format to maintain high utilization even when
a large number of MACs is used. The detailed explanation
will be given in Section 5.

4 SKIPPING REDUNDANT DECODING
COMPUTATIONS

As discussed in Section 3, the computational complexity
of decoding layers increases over time-step due to the feed-
back structure of the network. Note that in the decoding
stage the output word in the previous time-step comes in
as a new input token to the network, which is stacked into
a input matrix. Input word or output word becomes to-
ken as expressed as a vector that becomes the input of
encoder or decoder after the process of embedding and
positional encoding. Fig. 5a shows the detail computation
procedure in Masked Multi-Head Attention layer in the de-
coding stage (cf. Fig. B.1 for Multi-Head Attention layer).
Note that the input token at time-step t is being stacked to
Y = [y1, y2, ..., yt]. This stacking is necessary since the
correlation between K and Q is computed over the entire
time steps in COM2. Due to the stacking, the computational
complexity as well as the amount of data needed for the com-
putation increase linearly as the time-step increases. This
results in quadratic increase of the total decoding operations
as well as the data elements, as demonstrated in Fig. 6 for
various sentence length.

However, if we carefully investigate the computation proce-
dure in the decoding stage, it can be noticed that the unique
information added at each time step is constant except for
COM2 and COM4, as highlighted in Fig. 5b. More specifi-
cally, if we maintainK and V for all the previous time-steps,
we can compute COM2 and COM4 without performing re-

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

(a) (b)

Divide

by

&

Softmax

head0 - 7

Concatenate

P(t x t)

WQ (dq x dmodel)

y1 y2 y3

Y (dmodel x t)

q1 q2 q3

Q(dq x t)

(dk x t)

(dv x t)

K = WK * Y

V = WV *Y

k1

k2

k3

q1 q2 q3

KT(t x dk) Q(dq x t) softmax

 (txt)

v1 v2 v3

V(dv x t)
Z0 (dv x t)

Wo(dmodel x dmodel)

Z (dmodel x t)

COM2 COM3 COM4

COM1

COM5

head0 - 7

y1y1 y2y1 y2 y3

Masked

Multi-Head Attention

Masked Masked

ith(i+1)th(i+2)th

Divide

by

&

Softmax

head0 - 7

Concatenate

P(t x 1)

WQ (dq x dmodel)

y3

Y (dmodel x 1)

q3

Q(dq x 1)

(dk x 1)

(dv x 1)

K = WK * Y

V = WV *Y

k1

k2

k3

q3

KT(t x dk) Q(dq x 1) softmax

 (tx1)

v1 v2 v3

V(dv x t)
Z0 (dv x 1)

Wo(dmodel x dmodel)

Z (dmodel x 1)

COM2 COM3 COM4

COM1

COM5

head0 - 7

y1

Masked

Multi-Head Attention
(Skipping
Redundant

Computations)

ith(i+1)th(i+2)th

y2y3

Figure 5. Comparison of the computing flows for the masked multi-head attention between (a) the conventional flow with on-the-fly
iterative computations and (b) the proposed flow with redundant computation skipping

N
u

m
b

e
r

o
f

D
e
c

o
d

in
g

O
p

e
ra

ti
o

n
s

 [
x

1
0

1
0
]

0.0

1.5

OPTIMUS

3.0

4.5

6.0

7.5

0

250

500

750

1000

1250
(a)

(b)

OPTIMUS

without Skipping

P
a
rt

ia
l
D

a
ta

 S
iz

e
 [

M
B

]

Decoding

Decoding

-86.11%

-85.45%

Number of Words
(b)

OPTIMUS

OPTIMUS

without Skipping

4 32 6018 46

Figure 6. (a) Comparison of the number of decoding operations
depending on skipping computation. (b) Comparison of partial
data size depending on skipping computation.

dundant computation of re-creating them in COM1. Note
that computation in COM1, COM3 and COM5 takes time-
step as an independent dimension. Therefore, once K and
V of the previous time-step are loaded, token vectors only
for the current time-step, i.e., qt, kt, vt, need to be newly
computed to produce zt, which will be used as the new
token for the next layer.

This change allows us to skip redundant decoding computa-
tion, and there are three implications with it. First, since K
and V of previous time steps are loaded (rather than com-
puted on the fly), it increases memory load overhead. But
its overhead is much smaller compared to loading weights,
since the typical size of K and V (e.g., K[dk × t]) is much
smaller than the weight (e.g., WK [dk × dmodel]) where
t < dmodel(= 512). Furthermore, there are savings as we
need to keep the input token for the next layer Y just for
one time-step. Therefore, the overall increase of memory
load overhead is small.

Second, this change opens up the possibility of keeping
intermediate activation fully local. As shown in Fig. 5b,

the storage needed for intermediate activation is (almost)
independent to t (i.e., the size of buffer needed for keeping
Z0[dv × 1] is independent to t and P is typically smaller
than Z0). This implies that one can assign a fixed buffer
size to keep all the intermediate activation locally and avoid
DRAM memory access.

The third implication is that the computation pattern in de-
coding is changed from Matrix-Matrix to Matrix-Vector
multiplication. This change becomes a serious issue for
GPU. As demonstrated in Section 7, GPU cannot exploit
the benefit of skipping redundant decoding computation as
it suffers seriously low utilization for Matrix-Vector com-
putation. Whereas, custom hardware tends to maintain the
utilization rate for Matrix-Vector computation as well, and
thus the reduced computational complexity from skipping re-
dundant decoding computation can be fully exploited. Also,
note that the use of sparse matrix for computation in hard-
ware can further reduce the overhead of weight load and
make Matrix-Vector multiplication more efficient.

We notice that OpenNMT (Klein et al., 2017) also employs
the concept of skipping redundant decoding computation
in its Pytorch implementation. But the performance gain
is limited for the reason we discussed above. In Section 7,
we show that the impact of redundant computation skipping
is much larger in the proposed custom accelerator than in
GPU.

5 SET-ASSOCIATIVE RCSC (SA-RCSC)
As explained in Section 2.2, the RCSC format (Park et al.,
2019) is a sparse matrix format that mitigates problems
with sparse matrix-vector multiplication (sM×dV) such as
PE load imbalance and input load miss. While the RCSC
format was originally proposed to increase the PE utilization
for LSTM by exploiting unique characteristics of LSTM,
it can actually be applied to any neural network in which
an input is multiplied by multiple weight matrices. Since
the Transformer also has such characteristics, we extend

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

R_id: Row Index of Original

Weight Matirx

Re_R_id: Row Index of

Rearranged Weight Matirx

SA: Set Associativity

R_len

0

1

2

3

4

5

6

7

3

2

0

3

4

2

1

1

R_id R_len

4

0

3

1

5

6

7

2

4

3

3

2

2

1

1

0

PE

0

1

2

3

3

2

1

0

Value

Re_R_id

w
4,0

w
3,0

w
0,1

w
3,4

w
6,3

w
1,1

w
5,3

w
4,2

w
0,5

w
1,5

w
5,7

w
4,4

w
3,6

w
4,6

w
7,7

R_id

4

0

3

1

2

7

6

5

PE

0

1

2

3

0

1

2

3

w
4,0

w
3,0

w
4,4

w
3,4

w
0,1

w
0,5

w
1,5

w
4,2

w
4,6

w
3,6

w
0,6

w
6,3

w
5,3

w
7,7

w
5,7

w
1,1

0 2 0 2 1 3 1 3

0 0 1 2 6 7 5 7

Step1
Step2 Step3

RCSC (SA = 1)

 Original Weight Matrix
Rearranged Weight Matrix

Step4

Step5

Col_id

Col_len 2 2 2 2 1 3 2 2

0 4 1 5 2 6 3 7

Head0 Head1

SA = 1 (Conventional RCSC Format)

R_id R_len

4

0

3

1

5

6

7

2

4

3

3

2

2

1

1

0

SET

0

1

1

0

0

1

1

0

R_id

4

0

1

3

5

6

2

7

SET

0

1

0

1

0

1

0

1

Step2 Step3

Rearranged Weight Matrix

Step5

SA = 2 (Set Associative RCSC Format)

Value w
4,0

w
3,0

w
4,4

w
3,4

w
1,1

w
1,5

w
0,5

w
4,2

w
4,6

w
3,6

w
0,6

w
5,3

w
6,3

w
5,7

w
7,7

w
0,1

0 3 0 3 1 2 1 2

0 0 1 3 4 5 4 7

RCSC (SA = 2)

Step4

Col_id

Col_len 2 2 2 2 1 3 2 2

0 4 1 5 2 6 3 7

w
0,6

w
4,0

w
4,2

w
4,4

w
4,6

w
3,0

w
3,4

w
3,6

w
0,1

w
0,5

w
0,6

w
1,1

w
1,5

w
7,7

w
6,3

w
5,3

w
5,7

w
4,0

w
4,2

w
4,4

w
4,6

w
3,0

w
3,4

w
3,6

w
1,1

w
1,5

w
0,1

w
0,5

w
0,6

w
5,3

w
5,7

w
6,3

w
7,7

ele

addrPE

0

0 0

w
4,0

w
4,4

w
4,2

w
4,6

2 2

ele

addrPE

1

1 1

w
3,0

w
3,4

w
3,6

w
7,7

2 3

ele

addrPE

2

0 0

w
0,1

w
0,5

w
0,6

w
6,3

2 3

ele

addrPE

3

1 1

w
1,1

w
1,5

w
5,3

w
5,7

3 3

ele

addrPE

0

0 1

w
4,0

w
1,1

w
4,2

w
5,3

2 3

ele

addrPE

1

0 1

w
3,0

w
0,1

w
0,6

w
6,3

2 3

ele

addrPE

2

0 1

w
4,4

w
1,5

w
4,6

w
5,7

2 3

ele

addrPE

3

0 1

w
3,4

w
0,5

w
3,6

w
7,7

2 3

Weight

Assignment to PE

Weight

Assignment to PE

h0 h7

K weightQ weight

Layer0 (decoder) Layer1 (decoder)

h0 h7 h0 h7

V weight

h0 h7

K weight

h0 h7

V weight

h0 h7

K weight

h0 h7

V weight

(b)

(a) (c)

Network Transformation

Network Transformation

Re_R_id

Figure 7. (a) The process of concatenating weights to apply the RCSC format. (b) The process of generating the conventional RCSC
format (SA = 1). (c) The process of generating the proposed SA-RCSC format (SA = 2).

the RCSC format to express the sparse weight matrices of
the Transformer. We also propose the SA-RCSC format to
improve the PE utilization rate which tends to degrade when
the original RCSC format is used for large number of PEs.

5.1 Generalizing RCSC for Transformer

The process of generating the RCSC format has two main
goals. The first goal is to assign the non-zero values to
the PEs evenly, so that the computational load of the PE is
similar to each other (Step 2 in Fig. 1). The second goal is
to reduce the input load miss by successively encoding the
same columns of the weight matrices for all the gates which
share the same input vector (Step 4 in Fig. 1). Note that
the weight matrix (WQ, WK , WV) of (masked) multi-head
attention in the Transformer is also multiplied by the same
input vector and there are 8 heads which share the same
input, so that the locality of the loaded input vector is higher
than that of LSTM.

5.2 SA-RCSC for Large-Scale PEs

In the conventional RCSC format, one PE is assigned to each
row. If the number of PEs is much larger than the number
of rows in the matrix, the number of rows processed by one
PE becomes smaller. If the number of rows processed by
one PE is too small, the locality of the input vector tends to
become low as the locality becomes more sensitive to the
distribution of non-zero elements in the row.

To mitigate this problem, we propose the SA-RCSC, in
which a set of PEs instead of one PE is assigned to each row.
With the proposed concept, the number of rows per set can
be made relatively large so that the locality of input vector
for the sets becomes higher. And, by assigning the weights
to the PEs in a set alternately, the PEs in a set can have

relatively high probability to share the same input vector.
Let us show an example using a simple LSTM accelerator
with four PEs (Fig. 7). Step 1 for the SA-RCSC is same as
that of the conventional RCSC. The number of nonzero ele-
ments in each row is counted to assess the computation load.
In step 2, the procedures for conventional RCSC and the
proposed SA-RCSC start to differ. In conventional RCSC,
four PE indices are sequentially assigned to the rows sorted
in descending order of computation load (Step 2 in Fig. 7b).
On the other hand, in SA-RCSC, only two set indices are
sequentially assigned to the rows if the set associativity (SA)
is 2 (Step 2 in Fig. 7c). If the SA is 4, only one set index
would be assigned in the step 2. After the set indices (num-
ber of PEs in the accelerator / SA) are sequentially assigned
from top rows, the next row with the largest number of
non-zero values is assigned to the set index with the least
computation load. In step 3 of the SA-RCSC, the pair of set
index and row index is sorted so that the set index is to be in
circular order to easily decode the set index assigned in the
row. In step 4, the first column of eight heads of WQ, WK ,
WV is successively encoded, and then the second column is
sequentially generated in RCSC format. In step 5, network
transformation is performed to keep the same output results
regardless of rearrangement the weight matrix in step 3.
Conventional RCSC and SA-RCSC formats are clearly dis-
tinguished when non-zero elements are assigned to PEs. In
conventional RCSC, non-zero elements are assigned to PE
according to the decoded PE index by modulo operation. In
the table showing weight assignment to PE in Fig. 7b, w4,0,
w4,4, w4,2, w4,6 are assigned to PE0. On the other hand, in
SA-RCSC, non-zero elements with a decoded set index 0
are assigned to PE0 and PE2 alternately as they are in the
same set. In the table showing weight assignment to PE in
Fig. 7c, w4,0, w1,1, w4,2, w5,3 are assigned to PE0 and w4,4,
w1,5, w4,6, w5,7 are assigned to PE2. Similarly, a non-zero

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

A
D

D
E

RPE 0

W AddMult

comp

m
u

x
_

b

R
(i

_
re

g
)

comp

comp

comp

comp

comp

comp

comp

R C V

i_buf

C
(w

_
fi

fo
)

comp

_out

(g_buf0:

input (R,C,V) x 4)

m
u

x
_

a

g_buf0

g_buf1

g_buf2

g_buf3

d
e

m
u

x

comps

C(w_reg)R(i_buf)

R C V w_fifo

spar/den

m
u

x
_

c

R C V

i_reg

P_SUM

Buffer

MAC

comps

PE 1

PE 1023

INPUT MEM

P
E

 A
R

R
A

Y
 3

2
 x

 3
2

OFF-CHIP DRAM

B
0
 [

4
 K

B
]

B
1
 [

4
 K

B
]

B
2
 [

4
 K

B
]

B
3
 [

4
 K

B
]

B
4
 [

4
 K

B
]

WEIGHT MEM

B
0
 [

9
.7

5
 K

B
]

B
1
 [

9
.7

5
 K

B
]

BIAS MEM [60 KB]

LAYER_NORM_

PARAM MEM [60 KB]

C
O

L
_

L
E

N

POSITION MEM [80 KB]

SA-RCSC

Format

B
1
2

7
 [

9
.7

5
 K

B
]

FORMAT DECODER

OPTIMUS

A
D

D
E

R

PE ARRAY weight data, K, V

input data (dense mode)

input data

(sparse mode)

T
o

 I
N

P
U

T
 M

E
M

CTRL

LOGIC

DIVIDER

ROOT

EXPONENT

R C V

Data Fetch

Computation

Bias, Position

Layer norm, x
W

Q
,W

K
,W

V

x + Position

= X

W
O

[W
Q
,W

K
,W

V
] · X

= Q,K,V

W
F1

Softmax

(K
T·Q/) = S

 V · S = Z
0-7 W

O
 · Z0-7

= Z

X + Z

= A0

W
F2

Layer Norm

(A0) = L0
ReLU (WF1 · L0 +

BF1) = F0
WF2 · F0 +

BF2
 = F1

A0 + F1

= A1

Layer Norm

(A1) = L1

W
Q
,W

K
,W

V
(for next layer)

State0 State1 State2 State3 State4 State5

(a)

(b)

Dense Matrix Multiplication Sparse Matrix Multiplication

State

Number of

Operations
3·d2

model·t dmodel·t
2

dmodel·t
2

d
2

model·t 2048·dmodel·t 2048·dmodel·tt·dmodel t·dmodel t·dmodel

Data Size

dmodel·t dmodel·t

3·d2
model d

2
model 2048·dmodel dmodel·2048 3·d2

model

Figure 8. (a) The overall architecture of OPTIMUS, a high-performance Transformer inference engine. (b) The control flow of the
OPTIMUS. Dense matrix multiplication is colored in green, and a sparse matrix multiplication is colored in blue.

elements in set 1 are assigned to PE1 and PE3 alternately.
In this example, the addresses of the input vector element
required by PE0 is 0, 0, 2, 2 with conventional RCSC. In
contrast, they are 0, 1, 2, 3 with SA-RCSC. As these ad-
dresses are requested sequentially, stalls due to input load
miss decrease in the SA-RCSC case. Detailed experimental
results for the PE utilization will be discussed in more detail
in Section 7.2.

6 PROPOSED HARDWARE ARCHITECTURE

6.1 Overall Architecture of OPTIMUS

The overall architecture of OPTIMUS, a customized system
for high-performance Transformer inference, is shown in
Fig. 8a.

PE array consists of N=1024 PEs, each of which is equipped
with a MAC unit as well as internal buffers for temporarily
staging in weight, input, and partial-sum data. A PE has two
data paths to support matrix computation for both sparse
and dense weights. In case of sparse weight (= sparse-
mode), the hierarchical input buffer (g buf and i buf) (Park
et al., 2019) is used to widen the search windows for input
vector, thereby reducing the input load miss rate due to
indexing sparse weights. In case of dense weight (= dense-
mode), however, the hierarchical buffer is inefficient since
it incurs unnecessary delay to fill it in with the shared input.
Therefore, input in dense-mode streams into i reg (instead
of i buf) to be directly multiplied with the dense weight.
To support SA-RCSC, partial sums of PEs within a set are
added via an adder tree. This across-PE accumulation is not

needed for the conventional RCSC. See Appendix C for a
detailed explanation of how OPTIMUS handles sparse and
dense matrix multiplication.

OPTIMUS is also equipped with the shared data buffers
for inputs and weights. WEIGHT MEM of 1.2MB (multi-
banks of 4.8KB) is used to double-buffer weights as well as
K, V matrix for skipping redundant decoding computation.
Thanks to pruning, the requirement of WEIGHT MEM for
double-buffering entire weights of a layer is reduced to
30% of the dense weight matrix (4MB). INPUT MEM also
consists of multi-bank SRAMs to separately buffer input
and partial-sums. Its size is set to stage-in at most 4-copies
of input and partial-sums specifically targeting the single-
batch use case of the decoder – four beams of input and
partial-sums can be fully-kept in INPUT MEM so that one
can avoid overhead of accessing DRAM to load/store them.
This results in remarkable inference performance for the
Transformer, as demonstrated in Section 7.

6.2 Supporting Diverse Matrix Computations

OPTIMUS is designed to achieve high performance for
all kinds of matrix multiplications in the Transformer. In
particular, OPTIMUS can achieve near-peak utilization for
both matrix-matrix multiplication in the encoder and matrix-
vector multiplication in the decoder with skipping redun-
dant computations. In case of matrix-vector multiplication,
SA-RCSC enables balanced parallelization of dot-product
computations across the rows of weights, achieving high uti-
lization even with a large number of PEs (N=1024). In case
of matrix-matrix multiplication, OPTIMUS utilizes a cus-

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

tomized dataflow to maximize weight reuse; weights loaded
in WEIGHT-MEM is fully reused over all the partial-sums
1) across the samples in a batch, 2) across the time-steps
(in the encoder) and 3) across the beams (in the decoder)
via INPUT MEM and partial-sum buffers. Please refer to
Fig. C.1 for more details on the dataflow.

The increase in this weight reuse comes at the cost of
increased overhead of DRAM access for load/store of
input/partial-sums. However, such overhead is relatively
small compared to loading weights andK, V matrices. Note
that the size of K and V matrices also increases over the
increased weight reuse, but they are double-buffered along
with the weight load, hiding its overhead behind the com-
putation cycles. Together with the dedicate data paths for
supporting sparse and dense weight matrices (as discussed
in the previous section), OPTIMUS can achieve high uti-
lization for the four different matrix computations of the
Transformer.

6.3 Control Flow for Hiding Data Transfer Overhead

One of the key challenges in achieving high performance
for the transformer inference is hiding the DRAM access
overhead for its large model data. In OPTIMUS, we care-
fully designed a control-flow for double buffering (via finite
state machines) to match the computation and data load
cycles. As an example, Fig. 8b illustrates the weight fetch
scheduling for a Multi-Head Attention layer. The computa-
tion sequence is grouped into 6 states, where each state is
associated with a set of computations along with the weight
to be prefetched in it. Note that the computation and the
data load cycles can be estimated given a word-length; i.e.,
the computation cycle for COM1 = [d2model × t] / [# MAC
× Effective PE Util], whereas the data transfer cycle for
Wo = [d2model×Sparsity (dense=1.0)] / Bandwidth. By em-
ploying this cycle estimation and by considering the data
dependency between the prefetched weight and the com-
putations, we balanced the weight prefetch cycles and the
compute cycles for all the states. As a result, we could mea-
sure that the spill-over cycles due to non-overlapped weight
double-buffer was only 4.7% of the total computation.

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

To evaluate the performance of OPTIMUS, WMT15 (EN-
DE) (Sebastien Jean & Bengio, 2015), which is a represen-
tative benchmark data set for the Transformer, was used.
For the evaluation of accuracy degradation due to prun-
ing, the bilingual evaluation understudy (BLEU) (Papineni
et al., 2002) score is used. We evaluated the latency and
throughput of OPTIMUS as the average of 3200 sentences
of different lengths. Since it takes too long to run such ex-

32

M
A

C
 U

ti
li
z
a

ti
o

n
 [

%
]

Number of MACs

30

40

50

60

70

80

34.5% Set Associative

RCSC

64 256 512 1024

Set Associativity

16

Conventional

RCSC

128

1

2

4

8

32

90

100

Figure 9. The MAC utilization for various number of MACs and
set associativity (SA). The proposed SA-RCSC maintains very
high MAC utilization rate even with the large number of MACs.

periments in RTL simulation, we devised a cycle-accurate
simulation model, of which the cycle-by-cycle behavior is
validated with the RTL simulation for the core PE block
(including SA-RCSC-base data fetch, MAC operation, and
partial-sum reduction). The precision for all the data used
in MAC/layer-norm/softmax is 16-bit fixed-point, except
for the accumulation in MAC (= 32-bit, then rounded). The
row-index for SA-RCSC is 11-bit.

The weight matrix trained with PyTorch on the GPU was
pruned using the well-known magnitude-based pruning to
reduce the amount of data (Han et al., 2015b). The av-
erage pruning rate for all layers is 77.25%, which makes
the amount of weight data stored in the SA-RCSC format
71.65% smaller than that of the dense matrix. The accuracy
in terms of BLEU was decreased by 1.92% after the pruning.
The detailed layer-by-layer description of the Transformer
model and its pruned network is given in the Appendix D.

The hardware setup for running inference of the Transformer
is as follows. The CPU result is measured from the in-
ference using Intel(R) i7-6900K CPU @ 3.20GHz, and
the GPU result is measured using NVIDIA Titan Xp with
the latest CUDA kernel. The Neural Machine Translation
Toolkit (Klein et al., 2017) is used for both CPU and GPU
experiments. To the best of our knowledge, hardware accel-
erators dedicated for the Transformer neural network have
not been reported yet. Thus, we design a custom Trans-
former hardware and apply CSC, RCSC and SA-RCSC
formats to the weight data for the hardware to see the effects
from different sparse matrix formats. Also, the redundant
computation skipping is intentionally disabled/enabled to
see the impact.

7.2 MAC Utilization

In accelerators which consist of large number of MACs,
it is important to maintain high MAC utilization for small
latency and high throughput. However, as mentioned in
Section 3.2, a sparse matrix encoded in CSC and RCSC
formats suffers from low utilization on large number of

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator
L

a
te

n
c
y

 [
s

])

0

1.06

0.4

0.2

0.1

Encoding Decoding

0.3

2.54x

1.09x

1.62x

Custom HW

Figure 10. The inference latency of various hardware. The latency
is measured for the average number of words (t = 27) for a batch
size of 1 and a beam size of 4.

4 32 6018 46

P
ro

c
e

s
s
in

g
 T

im
e
 [

m
s

]

0

5

10

15

20

25

0

350

700

1050

1400

1750

Encoding Decoding

(a)

GPU (Skipping)

CPU (Skipping)

OPTIMUS

4 32 60

Number of Words
18 46

(b)

CPU (Skipping)

GPU (Skipping)

OPTIMUS

Figure 11. The processing time for (a) encoding and (b) decoding
depending on the number of words on various hardware.

MACs. Simulation results confirm that the proposed SA-
RCSC format maintains much higher MAC utilization when
the number of MACs is large (Fig. 9). Note that, with 1024
MACs, SA-RCSC format with SA = 8 shows almost twice
higher MAC utilization rate than that of the conventional
RCSC (SA = 1 case). The MAC utilization increases as SA
increases but it becomes saturated when SA > 8 because
the number of non-zero elements assigned to each PE starts
to become relatively even at this condition.

7.3 Latency

In real-time processing applications, latency of single batch
processing is one of the most important design parameters.
As mentioned in Section 3, most of the computation time
is spent on decoding because of the sequence to sequence
structure (Fig. 10). The decoding processing time can be
reduced by skipping redundant computations. The effect of
redundant computation skipping varies from one hardware
platform to another as mentioned in Section 4. With the
skipping, the inference latency becomes 16.01× smaller in
custom hardware, but the latency reductions are only 2.54×
and 1.09× in the CPU and GPU, respectively (Fig. 10). In
addition to the redundant computation skipping, the pro-
posed SA-RCSC format gives additional 1.62 × reduction
in latency thanks to the higher MAC utilization.

For encoding, GPU processing time could be shorter than
OPTIMUS processing time when the number of words in
one sentence is very large because GPU utilization can be

Custom HW

T
h

ro
u

g
h

p
u

t
[S

e
n

te
n

c
e
/s

e
c
]

40

60

80

100

0

120

20

1 2 4

8 16 32

Batch Size

Figure 12. The throughput of various hardware for the batch size
from 1 to 32.

maximized in the parallel encoding process (Fig. 11a). How-
ever, most of the computation time is spent on decoding,
where the performance of the OPTIMUS is significantly
better than that of GPU and CPU (Fig. 11b). In the decod-
ing process, the processing time increases with the number
of words in any hardware platform because of the iterative
decoding characteristics. The performance gap between
OPTIMUS and CPU/GPU becomes higher as the number
of words increases thanks to the efficient vector-matrix mul-
tiplication in custom hardware which boosts up the effec-
tiveness of redundant computation skipping.

7.4 Throughput

In server system or multi-user scenarios, the throughput
analysis is important for batch sizes greater than 1. Fig.
12 shows the comparison of the throughput among CPU,
GPU, and the proposed hardware. Here, the throughput is
defined as the number of translated sentences per second
(sentence/s), which is calculated by dividing the number
of translated sentences by the processing time including
DRAM access. Thanks to the combinations of weight prun-
ing, SA-RCSC and computation skipping, processing time
becomes highly short, so the throughput of the OPTIMUS is
much higher than that of CPU and GPU for any batch size.

The throughput of GPU increases with the number of
batches because the MAC utilization increases and weight
data are reused as the batch size increases. On the other
hand, the increase of throughput is relatively small in OPTI-
MUS case because the MAC utilization rate remains almost
same regardless of the batch size. The modest throughput
increase in OPTIMUS with the increased batch size mostly
comes from the weight reuse in multi-batch scenario.

Note that OPTIMUS shows exceptionally high performance
in the single batch case because we designed the hardware to
keep all intermediate computation results local so that time-
consuming DRAM access can be completely eliminated.
This unique feature makes OPTIMUS an excellent candidate
for real-time applications, where the latency of single batch
inference is very important.

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

Table 2. Area and Power Consumption of OPTIMUS Core Blocks

COMPONENTS AREA [µm2] POWER [mW]

TOP CONTROL 54348(1.05%) 10.43(1.42%)
MEMORY 2759794(53.21%) 57.24(7.82%)
G BUF 1577(0.03%) 0.35(0.05%)
PERIPHERAL 23244(0.45%) 9.57(1.31%)

1024 PES
CONTROL 325758(6.28%) 34.13(4.66%)
MACS 1930187(37.22%) 598.16(81.73%)
I BUF 91294(1.76%) 21.96(3.00%)
TOTAL 5186201.416(100%) 731.84(100%)

E
n

e
rg

y
 [

J
]

(l
o

g
 s

c
a
le

)

10
2

10
3

10
4

10
1

10
5

1 2 4

8 16 32

Batch Size

Custom HW

10
6

Figure 13. The energy consumption expressed in log-scale to pro-
cess the test set (3200 sentences) for the batch size from 1 to
32.

Meanwhile, more widely used effective throughput
(OPS) (Gao et al., 2018) is defined as the total number
of operations to fully encode and decode a sentence divided
by processing time. The effective throughput of OPTIMUS
is 500.05 GOPS but we could not measure the OPS for CPU
and GPU so direct comparison is not possible unlike the
sentence/s metric.

7.5 Power Consumption and Energy Efficiency

For the power analysis, we synthesize OPTIMUS in a 28nm
CMOS technology running at 200MHz with 1.0V. The area
and power consumption of the on-chip components in OPTI-
MUS are extracted using Synopsys design compiler and the
data are shown in Table 2. While the memory part occupies
the largest area, power consumption is dominated by MACs
as expected.

The CPU power measured by the likwid power me-
ter (Treibig et al., 2010) is 50.46W, GPU power measured
by the NVIDIA-SMI is 53.4W and the custom hardware
consumes 731.84mW and DRAM power (196.3mW) was
adopted from the Micron power calculator (Micron Tech-
nology, 2017). Total energy accounts for both acceler-
ator and DRAM energy consumption. The energy con-
sumed by a DRAM is calculated by multiplying the total
amount of DRAM data access by the energy per unit bit (39
pJ/bit (Pawlowski, 2011)). There is orders-of-magnitude
difference between the energy consumption in the OPTI-

155x

Custom HW

1 2 4

8 16 32

Batch Size

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 [
S

e
n

te
n

c
e
 /
 J

]

0

0.2

0.4

0.6

0.8

2.0

4.0

6.0

50.0

60.0

70.0

90.0

100.0

110.0

120.0

1464x

Figure 14. The energy efficiency of processing the test set (3200
sentences) for the batch size from 1 to 32.

MUS and CPU/GPU (Fig. 13). It is because the OPTIMUS
finishes the inference operations much faster with smaller
power. As the batch size increases, the energy tends to de-
crease on all hardware due to weight data reuse (Fig. 13). Al-
though the largest energy reduction with the increased batch
size is achieved on the GPU, OPTIMUS consumes the small-
est energy for any batch size. Thanks to the high through-
put and small energy consumption, the OPTIMUS shows
1464× and 155× higher energy efficiency (sentences/J) than
GPU for a single batch case and a multi-batch case with
batch size = 32, respectively (Fig. 14).

8 CONCLUSION

This paper presents a custom hardware, OPTIMUS, for ac-
celerating the Transformer neural network computation with
high performance and high energy-efficiency. In order to
run the inference efficiently, the encoding and decoding
process were analyzed in detail, and dramatic performance
improvement was achieved by skipping redundant compu-
tations in the decoding process. In addition, a SA-RCSC
format was proposed to maintain high MAC utilization even
when a large number of MACs are designed in the accelera-
tor. These make latency, throughput, and energy efficiency
of OPTIMUS much better than CPU, GPU and conventional
custom hardware.

ACKNOWLEDGEMENTS

This research was supported by the MSIT(Ministry of Sci-
ence and ICT), Korea, under the ICT Consilience Cre-
ative program (IITP-2019-2011-1-00783) supervised by the
IITP(Institute for Information & communications Technol-
ogy Promotion).

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. Inter-

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

national Conference on Learning Representations (ICLR),
2015.

Cao, S., Zhang, C., Yao, Z., Xiao, W., Nie, L., Zhan, D., Liu,
Y., Wu, M., and Zhang, L. Efficient and effective sparse
lstm on fpga with bank-balanced sparsity. In Proceed-
ings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 63–72. ACM,
2019.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder for
statistical machine translation. CoRR, abs/1406.1078,
2014.

Gao, C., Chang, et al. DeltaRNN: A power-efficient recur-
rent neural network accelerator. In International Sym-
posium Field-Programmable Gate Arrays (FPGA), pp.
21–30. ACM, 2018.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural network with prun-
ing, trained quantization and huffman coding. CoRR,
abs/1510.00149, 2015a. URL http://arxiv.org/
abs/1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems
(NIPS), pp. 1135–1143, 2015b.

Han, S. et al. EIE: Efficient inference engine on compressed
deep neural network. In International Symposium Com-
puter Architecture (ISCA), pp. 243–254, 2016. ISBN
978-1-4673-8947-1.

Han, S. et al. ESE: Efficient speech recognition engine with
sparse LSTM on FPGA. In International symposium.
Field-Programmable Gate Arrays (FPGA), pp. 75–84,
2017. ISBN 978-1-4503-4354-1. doi: 10.1145/3020078.
3021745.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush,
A. M. OpenNMT: Open-source toolkit for neural ma-
chine translation. In Proc. ACL, 2017. doi: 10.18653/v1/
P17-4012. URL https://doi.org/10.18653/
v1/P17-4012.

Micron Technology, I. Calculating memory power for ddr4
sdram. Tech. Rep. TN-40-07, 2017.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine transla-
tion. In association for computational linguistics (ACL),
pp. 311–318. Association for Computational Linguistics,
2002.

Park, J., Kung, J., Yi, W., and Kim, J.-J. Maximizing system
performance by balancing computation loads in LSTM
accelerators. In Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2018. ISBN 978-3-9819263-
0-9.

Park, J., Yi, W., Ahn, D., Kung, J., and Kim, J. Balancing
computation loads and optimizing input vector loading in
lstm accelerators. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019. ISSN
0278-0070. doi: 10.1109/TCAD.2019.2926482.

Pawlowski, J. T. Hybrid memory cube (HMC). In 2011
IEEE Hot Chips Symposium (HCS), pp. 1–24, 2011.

Rizakis, M. et al. Approximate FPGA-based LSTMs under
computation time constraints. In International Sympo-
sium in Applied Reconfigurable Computing (ARC), 2018.

Sebastien Jean, Orhan Firat, K. C. R. M. and Bengio,
Y. Montreal neural machine translation systems for
WMT’15. In Proceedings of the Tenth Workshop on
Statistical Machine Translation. Association for Com-
putational Linguistics, 2015. URL https://www.
aclweb.org/anthology/W15-3014.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
neural information processing systems, pp. 3104–3112,
2014.

Treibig, J., Hager, G., and Wellein, G. Likwid: A
lightweight performance-oriented tool suite for x86 mul-
ticore environments. In 2010 39th International Con-
ference on Parallel Processing Workshops, pp. 207–216.
IEEE, 2010.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, S., Li, Z., Ding, C., Yuan, B., Qiu, Q., Wang, Y.,
and Liang, Y. C-LSTM: Enabling efficient LSTM using
structured compression techniques on FPGAs. In Interna-
tional Symposium on Field-Programmable Gate Arrays,
pp. 11–20. ACM, 2018.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016a.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016b.

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://www.aclweb.org/anthology/W15-3014
https://www.aclweb.org/anthology/W15-3014

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

x1

ich liebe dich

pe1 pe2 pe3

+

x1 x2 x3

(1 x k)
(k x dmodel)

(1 x dmodel)

x2

x3

Embedding

Positional

Encoding (1 x dmodel)

 =
)

 =
)

pe1

pos

i

0 0 0 0

0 1 2 3

pe2

pos (1)

i

pe3

pos (2)

i

pe1x1 +pe2x2 +pe3x3

Figure A.1. The process of embedding and positional encoding

A TRANSFORMER COMPUTATION
BREAKDOWN

A.1 Embedding & Positional Encoding

The first step of the Transformer is the word embedding
(Fig. A.1). The words in a sentence are converted into
vectors of dmodel size through the embedding process. For
example, a dmodel size vector representing ‘ich’ is the result
of multiplying the dmodel × k size embedding matrix and
one-hot k size vector representing ‘ich’, where k is the
number of words that the embedding matrix can represent.
Since the multiplied vector is one-hot vector, embedded
word vectors can be computed by reading only the memory
of the embedding matrix without multiplication.

Next, information about the relative or absolute position of
each word should be injected into embedded word vectors,
which is called positional encoding. Positional information
is expressed through sine and cosine functions. The values
of those functions are fixed values depending on the position
of each element of a vector and the position of each vector
in the sentence, so positional information can be referred to
a lookup table without being computed every time. The vec-
tors (x1, x2, · · · , xtE) which is the summation of embedded
word vectors and positional information are used as an input
matrix (dmodel × tE) of the encoder. This embedding and
positional encoding process is also applied to output words
when decoding.

A.2 Multi-Head Attention

Multi-head attention is the structure to measure the re-
lationship among words in two same/different sentences.
(Fig. A.2). This process is divided into five computations
(COM1∼5). All computations except COM5 are progressed
separately in the h heads which guarantee diverse attention
maps for better translation quality.

The first computation (COM1) is a matrix-matrix multiplica-

Multi-Head Attention

Divide

by

&

Softmax

head0

head1 head7

head0

head1

Z1

head7

Z7

Concatenate

P(t x t)

WQ (dq x dmodel)

x1 x2 x3

X (dmodel x t)

q1 q2 q3

Q(dq x t)

K(dk x t)

V(dv x t)

K = WK * X

V = WV * X

k1

k2

k3

q1 q2 q3

KT(t x dk) Q(dq x t) softmax

 (txt)

v1 v2 v3

V(dv x t) Z0 (dv x t)

Wo(dmodel x dmodel)

Z (dmodel x t)

x1

ich

x2

liebe

x3

dich

(1 x dmodel)

COM1

COM2 COM3 COM4

COM5

COM2

~
COM4

Figure A.2. The process of multi-head attention. This process is
divided into five computations (COM1∼5).

tion that computes query (Q), key (K), and value (V). The
size of the weight matrix (WQ,WK ,WV) is (dq, dk, dv)
× dmodel, where dq, dk, dv = dmodel/h. In the case of
computing the COM1 in multi-head attention of the encoder
and in masked multi-head attention of the decoder, the same
input matrix is multiplied by WQ, WK , WV to compute
Q, K, V . On the other hand, when the COM1 in multi-
head attention of the decoder is computed, K and V are
computed by multiplying the final output of the encoder by
WK , WV . Q is computed by multiplying the output of the
masked multi-head attention of the decoder by WQ. If WQ,
WK , and WV are pruned, COM1 becomes sparse matrix
and dense matrix multiplication (sM×dM).

The second computation (COM2) is to compute the score.
A score is computed as the inner product ofK and V , which
represents how words relate to each other. COM2 is always
multiplication of two dense matrices (dM×dM) because any
pruned weight is not used in COM2.

The third computation (COM3) is to divide the result of
COM2 by the size of the key vector (dk). This process
scales down the value and stabilizes gradients during train-
ing (Vaswani et al., 2017). Through the softmax computa-
tion, all these values become positive and the element-wise
sum in the query direction becomes always one.

The fourth computation (COM4) is to multiply the result of
COM3 by value (V). This process reduces the information
of unrelated words with low scores and increases that of
words which need to be focused. Due to the same reason as
COM2, COM4 consists of dM×dM.

The final fifth computation is to concatenate the results of
COM4 (Z0 -Z7) in each head and multiply the concatenated
results by the weight matrix (WO) to mix them. If WO is
pruned, COM5 consists of sM×dM. After five computations

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

+

X (dmodel x t)

(From embedding &

positional encoding)

(From multi head

self-attention)

Add (to residuals)

Layer Normalization

Z (dmodel x t)

(dmodel x t)

(dmodel x t)

Figure A.3. The process of the residual connection around each of
the sub-layers, followed by layer normalization.

Feed Forward 1

(dmodel x t)WF1

(df x dmodel)

bF1

(df x 1)

ReLU

Feed Forward 2

(df x t)

WF2

(dmodel x df)

bF2

(dmodel x 1)

Add & Layer Normalization

(dmodel x t)

(dmodel x t)

(dmodel x t)

(df x t)

Figure A.4. The process of position-wise feed forward network.

in multi-head attention, the output matrix still maintains the
same size as that of the input matrix.

A.3 Residual Add & Layer Normalization

The output of the sub-layers in each encoder and decoder are
added to their input, then the summation results are normal-
ized in the layer-normalization process (Fig. A.3). The mean
(µt) and standard deviation (σt) for the layer normalization
are computed for each vector in the word direction. The
normalized output is scaled by γ and is shifted by β, where
γ and β is the trained parameters. This computation amount
is much smaller than multi-head attention or position-wise
feed forward (0.72% of total computations).

A.4 Position-wise Feed Forward

Each layer of the encoder and decoder has a fully con-
nected feed-forward network. In this network, the input
matrix is first linearly transformed after being multiplied by
WF1[df × dmodel] and added by bF1[df], where df is the
inner-layer dimension size. The first transformation result
passes through Rectified Linear Unit (ReLU) activation, and
the rectified result is linearly transformed again as the sim-
ilar way to the first linear transformation. To maintain the
dimension of the output by dmodel, the size of weight WF2

and bias bF2 used in the second linear transformation should

Masked Multi-Head Attention

Divide

by

&

Softmax

head0

P(t x t)

COM2 COM3 COM4

k1

k2

k3

q1 q2 q3

KT(t x dk) Q(dq x t) softmax

 (txt)

v1 v2 v3

V(dv x t) Z0 (dv x t)

Figure A.5. The different computations (COM2 and COM4) of
masked multi-head attention.

be dmodel × df and dmodel each. After WF1 and WF2 are
pruned, the first transformation consists of sM×dM. On the
other hand, the second one becomes multiplication between
two sparse matrices (sM×sM), because its input matrix also
has many zero values after passing through ReLU.

A.5 Masked Multi-Head Attention

Masked multi-head attention is additionally performed only
at the decoder. This process is the same as the multi-head
attention computation process except the computation of
COM2 and COM4 (Fig. A.5). Unlike the correlation among
all words in a sentence is computed in the encoder, the
correlation between each word and its previous words is only
computed in the masked multi-head attention. Therefore,
after the correlation among all words is computed in COM2,
the multiplication results between the queries of previous
words and the keys such as k2 × q1 and k3 × q2 are masked
as a negative infinity value to make those masked values
converge to zero at COM3.

A.6 Linear & Softmax

The result of the multi-layer decoder process is converted
into probabilities of all k words through a linear and soft-
max layer. A linear layer consisting of a fully-connected
neural network projects the final output of the decoder into
k-dimension. Note that k varies from dataset to dataset, and
is usually as large as tens of thousands. Since the weight
matrix size of the linear layer (k × dmodel) is very large, it
is important to reduce the memory requirement of its weight
matrix using pruning to reduce the amount of computations.

The softmax layer converts the output of the linear layer
into a probability matrix of all k words. The word with
the highest probability is selected as the final result of that
decoding step. In the inference process, because only the
word with the highest score is selected, the softmax process
can be skipped.

A.7 Beam Search

The most common way to search a target sentence is to
select the word which has the highest probability for every
decoding-step. This way is based on the greedy algorithm,
however, is not guaranteed whether this method always
generates a best target sentence. The beam search supple-

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

Divide

by

&

Softmax

head0 - 7

Concatenate

P(tE x t)

WQ (dq x dmodel)

m1 m2 m3

M (dmodel x t)

q1 q2 q3

Q(dq x t)

k1

k2

k3

q1 q2 q3

KT(tE x dk) Q(dq x t) softmax

 (tExt)

v1 v2 v3

V(dv x tE)
Z0 (dv x t)

Wo(dmodel x dmodel)

Z (dmodel x t)

COM2 COM3 COM4

COM1

COM5

head0 - 7

Multi-Head Attention

ith (i+1)th (i+2)th

m1 m1 m2 m1 m2 m3 e1 e2 e3

From Masked-Multi

Head Attention
From Encoder

ith, (i+1)th, (i+2)th

(dk x tE)

(dv x tE)

K = WK * E

V = WV * E

Figure B.1. Analysis of redundant decoding computations of multi-
head attention

ments the limitation of the greedy search. In the beam
search method, the sentences where their cumulative proba-
bility for each word falls within top-n are selected for each
decoding-step, where n is the beam size. Note that the beam
search is as the same method as the greedy search algorithm
when n = 1. This beam search increases the translation
performance of a neural machine translation model, how-
ever, more resources and computation power are required
because the input size of the model is increased by n.

B SKIPPING REDUNDANT COMPUTATIONS
OF MULTI-HEAD ATTENTION IN
DECODERS

As mentioned in Section A.2, K and V in the multi-head
attention of the decoder are computed by using the final
output of the encoder (Fig.B.1). That is, K and V are fixed
matrices once they are computed at the first decoding time-
step. We can skip the computations for K and V for other
decoding time-steps by loading/storing the computedK and
V . Furthermore, due to the fixed K and V , zt which is
the vector element of Z at time-step t is only dependent on
qt, the query at time-step t. This property allows skipping
redundant decoding computations to be applied to even
multi-head attention in the decoder layers. In summary, only
the vector from the output word of the previous decoding
time-step is required as an input of the decoder for each
decoding time-step.

C SPARSE/DENSE MATRIX COMPUTATION
FLOWS IN OPTIMUS

In this section, we describe the details of the computation
flows in OPTIMUS, focusing on the matrix multiplication

flows. The sM×sM multiplication for the sparse weight
and the sparse input matrix is done as follows. Tiny sized
g buf and i buf are assumed for a simple example and the
exemplary sparse weight matrix and input matrix are shown
in Fig. C.1. Note that the number of input matrix columns
that can be loaded in OPTIMUS depends on the size of
the P SUM buffer in the MAC. The example assumes that
inputs for up to two time steps can be stored, so the inputs
for t0, t1 are loaded into i buf via g buf from INPUT MEM
in the order a0,0, a0,1, a1,1. The sparse weight matrix is
encoded in SA-RCSC format and loaded via w fifo. Then,
the column index of the weight element and the row index
of the input vector element are compared in the comparators
(comps), and if they match, the input value is multiplied
by the weight value, so w0,0 and a0,0 are multiplied in this
example. This value is stored in the P SUM buffer and is
added to the result of other dot product with the same index
information. Since the column index of w0,0 and the row
index of a0,1 also matches, w0,0 · a0,1 is executed. When
there are no more input elements that match the column
index of w0,0, the pointer of w fifo points to w2,1. Similarly,
the column index of w2,1 is compared with the row of i buf.
When a1,1 is matched, the value in the red region in i buf is
shifted to the blue region and two input elements are newly
loaded from g buf. This control method minimizes the
occurrence of stalls because the larger search window allows
the input elements to be prepared even if the address of the
requested input elements is irregular due to sparse weight.
After the sixth computation shown in the computation order
in the Fig. C.1, the MAC computations for t0 and t1 are
completed. The value stored in the P SUM buffer is added to
the value in the P SUM buffer of another PE with the same
SA number and then it is stored in INPUT MEM. If there
are no more tokens to be computed other than t0, t1, the
tokens are directly used as an input of the next computation.
However, if word length exceeds the internal P SUM buffer
size, the value of t0, t1 are stored in the DRAM and the
weight matrix must be reloaded to compute t2, t3.

The process for multiplication of dense weight matrix with
dense input matrix is simpler than the process for the sparse
matrix computation. The order of input matrix loading is
the same as that for the sparse input case. However, input
elements are loaded through i reg rather than g buf and
i buf. Unlike the sparse matrix computation where all PEs
are loaded with the same input data, different input values
are loaded to each PE in the dense matrix computation case.
Therefore, the hierarchical buffer structure is not suitable
for each PE to load input vector element separately because
the input vector elements are shared by all PEs when the
hierarchical buffer is used. The parts where the dense matrix
multiplications are performed are the COM2 and COM4
process of the masked multi-head attention and the multi-
head attention. In these processes, the row size of the weight

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

dM× dM

WMult

R VC

w_fifo

R VC

i_reg

Add

From

WEIGHT_MEM

dense weight elements

From

INPUT_MEM

P_SUM Buffer

To

INPUT

_MEM

PE0

w0,00

0

w2,002

w0,110

w2,102

C
partial
sum C

0

1

1

0

partial
sum

a0,000

w0,0 a0,0*

2

R

0

R

2

0 w0,0 a0,1*

w2,0 a0,0* w2,0 a0,1*

1: w0,0 a0,0*

The order of

computations

2: w0,0 a0,1*

3: w2,0 a0,0*

4: w2,0 a0,1*

5: w0,1 a1,0*

6: w0,1 a1,1*

7: w2,1 a1,0*

8: w2,1 a1,1*

9: w0,2 a2,0*

10: w0,2 a2,1*

R C V

i_buf

WMultm
u

x
_

b

R VC

w_fifo

R VCR VC
g_buf0

Add

From

WEIGHT_MEM

sparse weight elements

From

INPUT_MEM

sparse input elements

sM× sM

To

INPUT

_MEM

PE0

P_SUM Buffer

C
partial
sum C

0

1

partial
sum

w0,0 a0,0*

R

0

R

2 w2,1 a1,1*

w0,000

w2,112

w0,220

w0,330

a1,111

a2,002

a2,112a3,003

1: w0,0 a0,0*

The order of

computations

3: w2,1 a1,1*

4: w0,2 a2,0*

5: w0,2 a2,1*

6: w0,3 a3,0*

7: w0,0 a0,2*

8: w0,0 a0,3*

9: w2,1 a1,2*

10: w2,1 a1,3*

The computed partial sum for t0, t1 is transferred to the INPUT_MEM . Weight Matrix are reload from WEIGHT_MEM for computing t2, t3

a0,000

a0,110

2: w0,0 a0,1*

w0,0 a0,0* + w0,2 a2,0*
partial sum:
(R = 0, C = 0)

1 w0,0 a0,1*0

+ w0,3 a3,0*

w0,0 w0,1

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w0,2 w0,3

w1,2 w1,3

w2,2 w2,3

w3,2 w3,3

a0,0 a0,1

a1,0 a1,1

a2,0 a2,1

a3,0 a3,1

a0,2 a0,3

a1,2 a1,3

a2,2 a2,3

a3,2 a3,3

PE0

PE1

PE0

PE1

Dense Weight Matrix Dense Input Matrix
t0 t1 t2 t3

Range of P_SUM

Buffer

w0,0

w1,0

w2,1

w3,0

w0,2 w0,3

w1,3

w3,2

a0,0

a1,1

a2,0 a2,1

a3,0

a0,2

a1,2

a2,3

a3,2 a3,3

PE0

PE1

PE0

PE1

Sparse Weight Matrix Sparse Input Matrix
t0 t1 t2 t3

Range of P_SUM

Buffer

a0,3

a1,3

a0,1

SA-RCSC
Format

Figure C.1. Detailed description of how sM×sM and dM×dM are computed inside a PE of OPTIMUS.

matrix is t or dmodel (Fig. 5). This row size is smaller than
that of the weight matrix where the sparse matrix compu-
tation is performed. So one PE processes fewer rows than
sparse matrix multiplication case so that the partial sum for
more columns of input matrix can be accumulated in the
P SUM buffer. As a result, high reuse of weight data can be
achieved. Since the weight matrix is not sparse, the value
is transferred to the w fifo in the column direction with-
out using the sparse matrix format. The pointer of w fifo is
shifted every cycle and the calculated P SUM buffer value is
transferred to the INPUT MEM similar to the sparse matrix
multiplication case.

D PRUNING RESULTS OF THE
TRANSFORMER MODEL

We first trained a 6-layer transformer model with h = 8,
dmodel = 512, df = 2048, and n = 36549 using WMT
English-to-German (EN-DE) dataset (Sebastien Jean &
Bengio, 2015) under the same training condition as sug-
gested in (Klein et al., 2017) and (Vaswani et al., 2017).
After finishing training, we pruned the weights in the trans-
former model with the pruning rates shown in Table D.1
using the magnitude-based pruning method (Han et al.,
2015b). Then we retrained the pruned model while main-
taining the above training condition except the learning rate
schedule; we use the learning schedule scaled by 1.25 com-
pared to the original one. The weights of the transformer
model are removed by 77.25% in average, but the BLEU
score only degrades about 0.6 in the WMT15 EN-DE dataset
(Table D.1).

OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator

Table D.1. The sparsity of the pruned Transformer model and BLEU evaluation results on WMT15

LAYER SUB LAYER MATRIX SIZE PRUNING RATE [%] DATA SIZE
(DENSE) [KB]

DATA SIZE
(PRUNED) [KB] BLEU

ENCODER0 MHA 512X512 77.93 2048 567.27
FF 2048X512 73.39 4096 1368.21

ENCODER1 MHA 512X512 77.89 2048 586.14
FF 2048X512 75.12 4096 1279.68

ENCODER2 MHA 512X512 77.92 2048 567.56
FF 2048X512 75.18 4096 1276.77

ENCODER3 MHA 512X512 78.02 2048 565.00
FF 2048X512 75.26 4096 1272.52

ENCODER4 MHA 512X512 77.97 2048 566.15
FF 2048X512 75.31 4096 1270.09

ENCODER5 MHA 512X512 77.91 2048 567.73
FF 2048X512 75.17 4096 1277.11 PRE

DECODER0
MMHA 512X512 78.09 2048 563.04 PRUNING:
MHA 512X512 77.99 2048 565.68 32.29

FF 2048X512 75.08 4096 1281.80

DECODER1
MMHA 512X512 77.99 2048 565.59 POST
MHA 512X512 78.09 2048 563.06 PRUNING:

FF 2048X512 75.06 4096 1282.88 31.67

DECODER2
MMHA 512X512 78.01 2048 565.77
MHA 512X512 77.97 2048 566.28

FF 2048X512 74.99 4096 1286.58

DECODER3
MMHA 512X512 78.00 2048 565.52
MHA 512X512 77.95 2048 566.77

FF 2048X512 74.96 4096 1288.27

DECODER4
MMHA 512X512 78.02 2048 564.87
MHA 512X512 77.97 2048 566.10

FF 2048X512 75.02 4096 1284.88

DECODER5
MMHA 512X512 77.99 2048 565.60
MHA 512X512 77.90 2048 567.95

FF 2048X512 75.04 4096 1284.03
LINEAR 36549X512 79.77 36549 9104.25

MMHA: MASKED MULTI-HEAD ATTENTION, MHA: MULTI-HEAD ATTENTION, FF: POSITION-WISE FEED FORWARD

