Electrides as a New Platform of Topological Materials

Motoaki Hirayama, Satoru Matsuishi, Hideo Hosono, Shuichi Murakami
2018 Physical Review X  
Recent discoveries of topological phases realized in electronic states in solids have revealed an important role of topology, which ubiquitously appears in various materials in nature. Many well-known materials have turned out to be topological materials, and this new viewpoint of topology has opened a new horizon in material science. In this paper we find that electrides are suitable for achieving various topological phases, including topological insulating and topological semimetal phases. In
more » ... the electrides, in which electrons serve as anions, the bands occupied by the anionic electrons lie near the Fermi level, because the anionic electrons are weakly bound by the lattice. This property of the electrides is favorable for achieving band inversions needed for topological phases, and thus the electrides are prone to topological phases. From such a point of view, we find many topological electrides, Y_2C (nodal-line semimetal (NLS)), Sc_2C (insulator with π Zak phase), Sr_2Bi (NLS), HfBr (quantum spin Hall system), and LaBr (quantum anomalous Hall insulator), by using ab initio calculation. The close relationship between the electrides and the topological materials is useful in material science in both fields.
doi:10.1103/physrevx.8.031067 fatcat:4wakhno5vjd47nzotczwkgy5oi