Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding

Gregoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, Geoffrey Zweig
2015 IEEE/ACM Transactions on Audio Speech and Language Processing  
Semantic slot filling is one of the most challenging problems in spoken language understanding (SLU). In this paper, we propose to use recurrent neural networks (RNNs) for this task, and present several novel architectures designed to efficiently model past and future temporal dependencies. Specifically, we implemented and compared several important RNN architectures, including Elman, Jordan, and hybrid variants. To facilitate reproducibility, we implemented these networks with the publicly
more » ... lable Theano neural network toolkit and completed experiments on the well-known airline travel information system (ATIS) benchmark. In addition, we compared the approaches on two custom SLU data sets from the entertainment and movies domains. Our results show that the RNN-based models outperform the conditional random field (CRF) baseline by 2% in absolute error reduction on the ATIS benchmark. We improve the state-of-the-art by 0.5% in the Entertainment domain, and 6.7% for the movies domain. Index Terms-Recurrent neural network (RNN), slot filling, spoken language understanding (SLU), word embedding.
doi:10.1109/taslp.2014.2383614 fatcat:yn7sgsgn7nfevfbnn6byk4nm2q