A Bounded Near-Bottom Cruise Trajectory Planning Algorithm for Underwater Vehicles

Jingyu Ru, Han Yu, Hao Liu, Jiayuan Liu, Xiangyue Zhang, Hongli Xu
2022 Journal of Marine Science and Engineering  
The trajectory planning algorithm of underwater vehicle near-bottom cruise is important to scientific investigation, industrial inspection, and military affairs. An autonomous underwater vehicle (AUV) often faces the problems of complex underwater environment and large cruise area in a real environment, and some robots must hide themselves during the cruise. However, to the best of our knowledge, few studies have focused on trajectory planning algorithms for AUVs with multiple constraints on
more » ... ge-scale maps. The currently used algorithms are not effective at solving length-constraint problems, and the mainstream trajectory planning algorithms for robots cannot be directly applied to the needs of underwater vehicle sailing near the bottom. Therefore, we present a bounded ridge-based trajectory planning algorithm (RA*) for an AUV to go on a near-bottom cruise. In the algorithm, we design a safety map based on a spherical structure to ensure the safe operation of the robot. In addressing the length-constraint problem and large-scale map planning problem, this paper proposes a two-stage framework for RA*, which designs map compression and parallel computation using a coarse-fine planning framework to solve the large-scale trajectory planning problem and uses a bounded search method to meet the trajectory planning requirements of length constraint. In this study, experiments based on the virtual ocean ridge are conducted, and the results validate the effectiveness and efficiency of the proposed RA* with MCPC algorithm framework.
doi:10.3390/jmse11010007 fatcat:7j7pznowqjbhhmqzch2u4ibuie