A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China

Meijun Jin, Junming Li, Caili Wang, Ruilan Shang
2015 Remote Sensing  
This paper proposes a practical split-window algorithm (SWA) for retrieving land surface temperature (LST) from Landsat-8 Thermal Infrared Sensor (TIRS) data. This SWA has a universal applicability and a set of parameters that can be applied when retrieving LSTs year-round. The atmospheric transmittance and the land surface emissivity (LSE), the essential SWA input parameters, of the Landsat-8 TIRS data are determined in this paper. We also analysed the error sensitivity of these SWA input
more » ... eters. The accuracy evaluation of the proposed SWA in this paper was conducted using the software MODTRAN 4.0. The root mean square error (RMSE) of the simulated LST using the mid-latitude summer atmospheric profile is 0.51 K, improving on the result of 0.93 K from Rozenstein (2014). Among the 90 simulated data points, the maximum absolute error is 0.99 °C, and the minimum absolute error is 0.02 °C. Under the Tropical model and 1976 US standard atmospheric conditions, the RMSE of the LST errors are 0.70 K and 0.63 K, respectively. The accuracy results indicate that the SWA provides an LST retrieval method that features not only high accuracy but also a certain universality. Additionally, OPEN ACCESS Remote Sens. 2015, 7 4372 the SWA was applied to retrieve the LST of an urban area using two Landsat-8 images. The SWA presented in this paper should promote the application of Landsat-8 data in the study of environmental evolution.
doi:10.3390/rs70404371 fatcat:dvrvicxfofasrahwjttxh7t4hq