A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents
2021
Boundary Value Problems
AbstractWe study the coupled Choquard type system with lower critical exponents $$ \textstyle\begin{cases} -\Delta u+\lambda _{1}(x)u=\mu _{1}(I_{\alpha }* \vert u \vert ^{ \frac{N+\alpha }{N}}) \vert u \vert ^{\frac{\alpha }{N}-1}u+\beta (I_{\alpha }* \vert v \vert ^{ \frac{N+\alpha }{N}}) \vert u \vert ^{\frac{\alpha }{N}-1}u,\quad x\in {\mathbb{R}}^{N}, \\ -\Delta v+\lambda _{2}(x)v=\mu _{2}(I_{\alpha }* \vert v \vert ^{ \frac{N+\alpha }{N}}) \vert v \vert ^{\frac{\alpha }{N}-1}v+\beta
doi:10.1186/s13661-021-01491-z
fatcat:yvcx2c4ajncwxlztdegm2krahm