A constant lower bound for any quantum protocol for secure function evaluation [article]

Sarah Osborn, Jamie Sikora
2022 arXiv   pre-print
Secure function evaluation is a two-party cryptographic primitive where Bob computes a function of Alice's and his respective inputs, and both hope to keep their inputs private from the other party. It has been proven that perfect (or near perfect) security is impossible, even for quantum protocols. We generalize this no-go result by exhibiting a constant lower bound on the cheating probabilities for any quantum protocol for secure function evaluation, and present many applications from
more » ... s transfer to the millionaire's problem. Constant lower bounds are of practical interest since they imply the impossibility to arbitrarily amplify the security of quantum protocols by any means.
arXiv:2203.08268v1 fatcat:mjsw22jbzfa2xojb7mn6bkgc6e