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While different optical flow methods continue t o  ap- 
pear, there has been a lack of quantitative evaluation 
of existing methods. For a common set of image se- 
quences, we report the results of regularly cited tech- 
niques, including instances of differential, matching, 
energy-based, and phase-based approaches. 

1 Introduction 
A fundamental problem in image sequence analysis 

is the measurement of optical flow (or image velocity). 
The goal is an approximation to the 2-d motion field 
(the projection of 3-d velocities onto the imaging sur- 
face) from image intensity [18, 321. Image velocity can 
be used for many tasks including passive scene inter- 
pretation and autonomous, active exploration. How- 
ever, tasks such as computation of egomotion and sur- 
face structure require accurate and dense velocity mea- 
surements; current techniques require that relative er- 
rors in the optical flow be less than 10% [6, 211. Verri 
and Poggio [32] suggest that accurate estimates of the 
motion field are generally inaccessible. 

Many methods for computing optical flow have been 
proposed - others continue to appear. Lacking how- 
ever, is quantitative evaluation of existin methods, 
and direct comparisons. Kearney et al. [22$ discussed 
sources of error with gradient-based methods. Lit- 
tle and Verri [23] compared properties of differential 
and matching methods, and reported some quantita- 
tive comparisons, but only on two relatively simple, 
synthetic test cases; the accuracy they reported was 
not encouraging, with average relative errors of 10%- 
20%, and average angular errors of 7'-12' in the best 
cases. Some of the methods reported here produce sig- 
nificantly better results. 

This paper reports a comparison of widely cited op- 
tical flow methods. We implemented nine techniques 
(see [7]), of which six are reported here. They include 
instances of differential methods, region-based match- 
ing, energy-based and phase-based techniques: Horn 
and Schunck [19], Lucas and Kanade [24, 251, Uras et 
al. [31], Anandan [3, 41, Heeger [17], and Fleet and 
Jepson [12, 131. Details on the implementations, in 
addition to those reported below can be found in [7]. 
The programs are available to those interested. 

Most of these techniques can be viewed as several 
stages of processing. Typically there exists 1) some 
degree of prefiltering or smoothing, 2) the extraction 
of basic measurements, such as spatiotemporal deriva- 
tives or local correlation surfaces, and 3) the integra- 
tion of these measurements to produce a 2-d flow field, 

which often involves assumptions about the smooth- 
ness of the underlying flow field. It is important to 
test the performance of optical flow techniques with 
respect to each of these stages separately (where pos- 
sible) [23]. Our selection of techniques for comparison 
was motivated in part by the desire to examine differ- 
ences in initial measurement process, or in the method 
used to integrate measurements. 

2 Optical Flow Techniques 

and several of the implementation specifics. 

2.1. Differential Techniques 
Differential techniques compute velocity from spa- 

tiotemporal derivatives of image intensity, or filtered 
versions of the image (using low-pass or band-pass fil- 
ters). The first instances used first-order derivatives, 
and were based on image translation [11, 19, 261, i.e. 

We begin with a brief description of the techniques, 

q x ,  t )  = I ( x  - v t ,  0 )  , (1) 
where v = (wl , ~ 2 ) ~ .  From a Taylor expansion of (1) 
[19]., or more generally from an assumption of conser- 
vation of intensity, d I ( x ,  t ) / d t  = 0 ,  the gradient con- 
straint equation is easily derived: 

( V I ( x ,  t ) )% + I t (x ,  t )  = 0 ,  (2) 
where V l ( x ,  t )  = (Iz(x, t ) ,  I y ( x ,  t))*. In effect, (2) 
yields the orientation and normal speed of spatial con- 
tours of constant intensity. But the two components 
of v in (2) are constrained by only one linear equation. 
Further constraints are therefore necessary. 

Second-order differential methods [26, 30, 311, use 
second-order derivatives to constrain 2-d velocity: 

L ( X ,  t)Wl + Iyz(x ,  t)vz + I&, t )  = 0 
Ly(x ,  t)Vl + Iyy(x,  t )vz  +It&, t )  = 0 (3) 

Equation (3) can be derived from (1), or from the 
conservation of V I ( x ,  t ) ,  d V l ( x ,  t ) / d t  = 0. Strictly, 
this means that no first-order deformations of intensity 
(e.g., rotation or dilation) are permitted. To measure 
image velocity, assuming d V I ( x ,  t ) / d t  = 0 ,  the con- 
straints in (3) may be used in isolation, or together 
with (2) to yield an over-determined system of linear 
equations. However, if the aperture problem prevails 
in a local neighbourhood (i.e. if intensity is effectively 
one-dimensional), then because of the sensitivity of nu- 
merical differentiation, 2nd-order derivatives cannot be 
measured accurately enough to determine the tangen- 
tial component of v. Velocity estimates from 2nd-~rder 
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methods are therefore usually sparse and somewhat 
less accurate than estimates from lSt-order methods. 

Local estimates of component (normal) velocity can 
also be combined through space and time. In one ap- 
proach, the local measurements in each neighbourhood 
are fit a single 2-d velocity field, e.g., a low-order poly- 
nomial model in V I  and V Z ,  using least-squares fit or 
Hough transform [ll, 22, 25, 29, 341. Usually V(X) is 
taken to be constant, although linear models for v(x) 
have been used successfully. A second approach uses 
global smoothness constraints, in which the velocity 
field is defined implicitly in terms of the minimum of 
an energy functional defined over the image [19, 261. 

These techniques assume that I(x, t )  is differen- 
tiable. This suggests that temporal aliasing should 
be avoided, and that numerical differentiation must 
be done carefully. The often stated restrictions that 
gradient-based techniques require image velocities less 
than 1 pixel/frame and linear intensity, arise from the 
use of 2 frames, poor numerical differentiation, or in- 
put signals corrupted by temporal aliasing. With 2 
frames, numerical differentiation is accomplished with 
a 18t-order difference, which is accurate only when 1) 
the input is highly over-sampled, or 2) intensity struc- 
ture is nearly linear. Assuming that aliasing cannot be 
avoided in image acquisition, one way to circumvent 
the problem is to apply differential techniques within 
a coarse-fine manner. Such extensions (e.g., [15]) are 
discussed in [7], but are beyond the scope of this paper. 

Horn and Schunck: Horn and Schunck [19] com- 
bined the gradient constraint (2) with a global smooth- 
ness term to constrain the velocity field, minimizing 

J D  
defined over a domain of interest D, where velocity v 
is a functions of x, and A reflects the influence of the 
smoothness term. Our implementation follows 1191, 
with X = 100. 

Lucas and Kanade: Following Lucas and Kanade 
[25, 241, and others [2, 22, 281, we implemented a 
weighted least-squares fit of local measurements (2) 
to a constant model for v in each local region i2 by 
minimizing 

W"X) [(VI(X, t>YV + It(X1 t)I2 , (5) 
X€n 

where W(x) denotes a window function (it gives more 
influence to constraints at  the centre of the window). 
The solution to (5) is given by 

ATW2Av = A T W 2 b .  (6) 

For points xi E R,  A = [VI(xl), ..., VI(x,)IT, W = 
diag[W(xl), ..., W(xn)l , b = -(&(xi), ..., I~(x~))~. 
Because ATW2A E R Z x 2 ,  the solution to (6) can be 
given in closed form. Equations (5) and (6) may also be 
viewed as weighted least-squares estimates of v from 

estimates of normal velocities v,n; (5) is equivalent to 

W2(x)w2(x) [vTn(x) + V7a(X)I2 (7) 
X€n 

where coefficients w2(x) reflect our confidence in the 
normal velocity estimates; here, w(x) = 1 1  Vl(x, t )  1 1 .  

Our implementation first smooths the image se- 
quence with an isotropic spatiotemporal Gaussian with 
a standard deviation of 1.5 pixels-frames. This is nec- 
essary to attenuate the temporal aliasing and quanti- 
zation present in image sequences. Derivatives were 
computed with 4-point central differences: the mask 
coefficients were &(-1,8,0, -8 , l ) .  Spatial neigh- 
bourhoods R were 5 x 5 pixels, and the window 
function W(x) was separable and isotropic; its 1-d 
weights in the horizontal and vertical directions were 
(0.0625,0.25,0.375,0.25,0.0625) as in [28]. The tem- 
poral support for the entire process is 15 frames. 

Simoncelli et al. [28] present a Bayesian perspec- 
tive of (5). .Their MAP solution is similar to (6), and 
yields confidence measures for the velocity measure- 
ments. This result did alter the velocity estimates 
significantly, but it does suggest that unreliable esti- 
mates be identified using the eigenvalues of AT W'A, 
A 1  2 XZ, which depend on the magnitudes and range 
of orientations of the spatial gradients. If X1 and Xz 
are greater than a threshold r ,  then v is computed 
from (6). If XI 2 T but XZ < r ,  then a normal velocity 
estimate is computed, and if A1 < r no velocity is com- 
puted. Here we used r = 1.0. Confidence measures are 
discussed further in [7]. 

Uras, Girosi, Verri and Torre: The 2nd-order 
technique considered herel is based on a local solution 
to (3). Following Uras et al. [31 , (3) may be solved 
for v wherever the Hessian H of I ! x, t )  is non-singular. 
In practice, for reliability, they divide the image into 
regions 8 x 8 pixels wide. Within each region they 
select the 8 estimates that best satisfy the constraint 
I( M V I  11 << 1 1  VIt 1 1 ,  where M ( V V ) ~ .  Of these 
they choose the one with the smallest condition num- 
ber K ( H )  of the Hessian (3). 

Our implementation presmooths the image sequence 
with a Gaussian kernel with a standard deviation of 3 
in space and 1.5 in time. Beaudet operators [8] are 
used to compute derivatives. We found that without 
further constraints the results are inaccurate; the de- 
terminant d e t ( H )  was therefore used to threshold the 
estimates, accepting estimates with d e t ( H )  2 1.0 or 
2.0. This threshold is examined in [7]. 

2.2 Region-Based Matching 
Accurate numerical differentiation may be impracti- 

cal because of noise, because a small number of frames 
exist, or because of aliasing in the image acquisition 
process. Region-based matching [4, 10, 231 is then 
more appropriate than differential methods. Such ap- 
proaches define velocity + as the shift s that yields the 

lThe technique of Nagel [26] is also discussed in [q. 
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best fit between image regions about xo at time t o ,  and 
at  xo + s at  time t l ;  that is, between image patches 

Io(x) W(x - XO) I ( x ,  t o )  , 
I~ (x ;  S) E W(X - XO) I(x + S ,  t l )  . (8) 

where W(x) denotes a 2-d window function. To find 
the best match one might maximize a similarity mea- 
sure over s) such as the normalized cross-correlation 
of IO r x) and Il(x; s). Or one might minimize a dis- 
tance measure, such as the sum-of-squared difference 
(SSD): 1 1  lo(x) - Il(x; s) 1 1 2 .  There is a close relation- 
ship between the SSD measure, the cross-correlation 
measure, and differential techniques [4, 131. 

Anandan: The method considered here, based on 
a Laplacian pyramid and a coarse-to-fine SSD-based 
matching strategy, was reported by Anandan [3, 41. 
Beginning at  the coarsest level, displacements are com- 
puted to subpixel accuracy by finding the minimum of 
a quadratic approximation to the SSD surface (about 
the point yielding the lowest SSD value for integer 
shifts). Beaudet operators [8] were used for numer- 
ical differentiation to estimate the quadratic surface. 
Confidence measures, Cmin and Cmax, are derived from 
the principle curvatures of the SSD surface at  the min- 
imum. Anandan then uses a smoothness constraint on 
the resulting velocity estimates, taking cmin and cma, 
into account. Using an overlapped projection strat- 
egy, the smoothed displacement field is projected to 
the next finer level in the pyramid, and used as initial 
values for the matching process at this level. Matching 
and smoothing are performed at this and subsequent 
levels of the pyramid until level 0 (the image) has been 
processed, producing the final flow field. We used a 
Laplacian pyramid with two levels. 

2.3 Energy-Based Methods 
A third class of optical flow technique is based on 

the output of energy of velocity-tuned filters [2, 5, 171. 
These methods are also called frequency-based owing 
the design of velocity-tuned filters in the Fourier do- 
main [I, 13, 27, 331. The Fourier transform of a trans- 
lating 2-d pattern (1) is 

f (k,  U) = fo(k) S(U + VTk) , (9) 
where &(k) is the Fourier transform of I(x,O), and 
6 ( k )  is a Dirac delta function. This shows that all 
nonzero power associated with a translating 2-d pat- 
tern lies on a plane in frequency space. It has been 
shown that certain energy-based methods are equiv- 
alent to correlation-based methods [l, 271 and to the 
gradient-based approach of Lucas and Kanade [2]. 

Heeger: Here we consider the method developed 
by Heeger 1171. Using 12 Gabor filters at  each spatial 
scale, the computation of image velocity is formulated 
as a least-squares fit of the filter energies to a plane 
in frequency space (based on an input model of white 
noise). Heeger first uses a Gaussian pyramid, each level 
of which is then band-pass filtered. Gabor filters are 
then applied to the scale-specific channels, from which 

velocities are measured. Level 0 (the image) should 
be used for speeds between 0-1.25 pixels/frame. Simi- 
larly, levels 1 and 2 should be used for speeds between 
1.25-2.5 and 2.5-5 pixels/frame. 

Our implementation uses three levels of the pyramid 
and chooses the v value from the pyramid level that 
best satisfies expected range of speeds for that level. 
The computation of v used Heeger's parallel method: a 
functional (relating the input model to expected filter 
energies) defined over some range of v is maximized to 
determine v. A peak signifies a 2-d velocity estimate. 
A ridge, rather than a well-defined peak, signifies a 
normal component of velocity. Our implementation 
here is ad hoc. 

2.4 Phase-Based Methods 
We refer to our fourth class of methods as phase- 

based, because velocity is defined in terms of the phase 
behaviour of band-pass filter outputs. Zero-crossing 
techniques [16, 351 may be viewed as phase-based [13]. 

Fleet and Jepson: The use of phase was first pro- 
posed by Fleet and Jepson [12, 131. The method de- 
fines component velocity in terms of the instantaneous 
motion of level phase contours in the output of band- 
pass velocity-tuned filters. Band-pass filters are used 
to decompose the input signal according to scale, speed 
and orientation. Each filter output is complex-valued 
and may be written as 

R(x, t )  = ~ ( x ,  t )  exp[i4(x1 t)l , (10) 
where p(x, t )  and +(x, t )  are the amplitude and 
phase parts of R. The component of v in 
the direction normal to level phase contours is 
given by v, = v,n, where normal speed and 
direction are v, = -+t(x, t)/ll V ~ ( X ,  t )I, and 
n = V$(X, t) / l l  V ~ ( X ,  t )  11, where V 4  2 x,  t )  = 
(&(x,, t ) ,  &(x! t ) )T .  In effect, this is a differential 
technique applied to phase rather than intensity. The 
phase derivatives are computed using the identity 

where R' is the complex conjugate of R. The full 2- 
d image velocity is then recovered locally by fitting a 
linear velocity field to the component velocities. 

They compute component velocity from the output 
of each velocity-tuned channel, on the condition that 
the phase behaviour is stable. The key to detecting in- 
stability is the detection of singularity neighbourhoods 
with a constraint on instantaneous frequency and am- 
plitude derivatives [20, 131; we refer to this stability 
threshold as r .  A second constraint is also needed on 
amplitude to ensure a reasonable signal-to-noise ra- 
tio. With respect to the computation of 2-d velocity, 
constraints are placed on the conditioning of the lin- 
ear system, and on the residual error. Like [12, 131, 
our implementation uses only a single scale tuned to a 
spatiotemporal wavelength of 4.25 pixels-frames. The 
entire temporal support is 21 frames, and we used the 
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same threshold values as those in [12, 131. 

3 Experimental Technique 

sequences, and the way that errors are measured. 

3.1 Synthetic Image Sequences 
The advantage of synthetic sequences is that we 

know the true motion field, and can therefore quan- 
tify performance. However, they are usually clean 
signals, with little occlusion, specularity, shadowing, 
transparency, etc.; and therefore these results should 
be taken as optimistic bounds on the expected errors 
with real inputs. We have collected results from sev- 
eral synthetic sequences [7]. Here we report results 
from: 

3D Camera Motion and Planar Surface: Follow- 
ing [12] we used two sequences that simulate transla- 
tional camera motion with respect to a textured planar 
surface (see Figure 1 (top)): 

0 In the translating tree sequence, the camera 
moves normal to its line of sight, with image ve- 
locities between (1.73,O.O) and (2.3,O.O); 

0 In the diverging tree sequence, the camera 
moves along its line of sight. The focus of ex- 
pansion is at  the centre of the image, and image 
speeds vary from 1.4 pixels/frame on one side to 
2.0 pixels/frame on the other. 

Yosemite Fly-Through Sequence: The Yosemite 
sequence (courtesy of Lynn Quam) is a complex test 
case (see Figure 1 (middle)). The motion in the up- 
per left is mainly divergent, the clouds translate to 
the right with at  pixel/frame, while velocities in the 
lower left are about 4 pixels/frame. This sequence 
is challenging because of the range of velocities and 
the occluding edges between the mountains and at  the 
horizon. There is severe aliasing in the lower left por- 
tion of the images however, causing most methods to 
produce poorer velocity measurements. 

3.2 Real Image Sequences 
In [7] we show results from several real image se- 

quences, of which two (see Figure 1 (bottom)) are dis- 
cussed here (obtained from the Database at  Sarnoff 
Research Centre, courtesy of NASA-Ames and SRI 
International.). The NASA sequence is mainly di- 
lational - the camera moves along it's line of sight to- 
ward the pop can. Image velocities are typically less 
than 1 pixel/frame. In the SRI sequence the camera 
translates perpendicular to its line of sight in front 
of clusters of trees. This is challenging because of 
the relatively poor resolution, the amount of occlu- 
sion, and the low contrast. Velocities are as large as 2 
pixels/frame. 

3.3 Error Measurement 
Following [12] we use an angular measure of error: 

Let velocities v = (~1 ,212)~  be written as 3-d direction 

Before reporting the results, we describe the image 

\ \ s \ \ t t t * i t r t t t / / / /  
\ \ \ \ % t V * t f f f ? t ? / / / /  ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ..*..,*'..*.,,,,,,. 
* t * * d # # a 4 & b b a \ \ \ \ \ \  

* * # # * 1 1 J 4 4 1 0 \ 8 8 \ \ \  
* t d d d d d i J b b b $ \ \ \ \ \ \  

Figure 1: (top) Image used for the translating and 
diverging tree sequences, and the motion field for the 
diverging tree sequence. (middle) A frame of the 
Yosemite sequence, and its motion field. (bottom) 
Frames from the SRI and the Nasa sequences. 

vectors, v' f (w; + wi + 1)-'l2 (211, 212, l)T. The error 
between the correct velocity and an estimate ?e is 

This error measure is convenient because it handles 
large and very small speeds without the amplification 
inherent in a relative measure of vector differences. 
The 10% bound on acceptable velocity errors for ego- 
motion and structure from 2-d motion corresponds to 
angular errors of roughly 2.5'. A similar measure is 
available for component velocity errors. 

There are several ways in which error behaviour may 
be reported. Below we concentrate on angular error 
statistics (for synthetic sequences), and the computed 
flow fields (for the real sequences). In [7] we provide 
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more details, and errors in component velocity. 

4 Experimental Results 
4.1 Synthetic Image Sequences 

For the synthetic data, for which the correct mo- 
tion fields are known, we report average angular error, 
standard deviation, the density of measurements, and 
the effects of confidence constraints. Although most 
of the results are self-evident from the tables, many of 
them deserve comments. 

For Horn and Schunck's method, it is clear that the 
accuracy is generally poor. In order to test whether 
this was due to  the crude numerical differentiation 
(1"-order forward differences) in [19] we also we also 
implemented the approach with spatiotemporal Gaus- 
sian presmoothing and 4-point central-differences for 
numerical differentiation, like our implementation of 
Lucas and Kanade. This improved the results in 
most cases, however the accuracy remained noticably 
poorer than other techniques, presumably owing to  the 
amount of smoothing imposed by the smoothness term 
in (4). The smoothing produced attractive flow fields, 
but appears to degrade the measurement accuracy. 

By contrast, the estimates produced by the lSt-order 
method of Lucas and Kanade are encouraging. More- 
over, as discussed below, we also find that the eigenval- 
ues of the normal matrix in (6) provide good measures 
of accuracy of the estimates. We find that changing 
this threshold allows us to select more accurate sub- 
sets of these estimates, accompanied of course by a 
reduction in the density of measurements. 

Interestingly, the matching technique of Anandan 
produced reasonable results for the translating tree 
sequence, but poor results for the diverging tree se- 
quence. We found in general that this technique was 
sensitive to dilation, in part owing to the smoothness 
constraint. However, we also ran the technique with- 
out the smoothing process and the results did not im- 
prove dramatically. Our attempts to threshold the re- 
sults to obtain an accurate subset (based on values of 
cmin and cmal) were also unsuccessful. Accordingly 
we do not report thresholded results here. 

Results for Uras et al. significantly improve with a 
threshold on d e t ( H ) .  Other results in [7] show that 
K ( H )  also provides a measure of confidence. Although 
this technique is capable of reasonable accuracy, the 
results tend to be very sparse. 

Heeger's results for the translating tree sequence 
used level 1 of the pyramid as the input speeds coin- 
cided with its velocity range of 1.25-2.5 pixels/frame. 
Level 0 was used for diverging tree sequence as most 
input speeds were below 1.25 pixel/frame. For the 
Yosemite sequence velocity estimates were computed 
at the three levels of the pyramid and then combined. 
Of the three, that velocity estimate from the level of 
the pyramid whose speed range was consistent with the 
true motion field, was chosen. These results are in the 
table. We also combined the pyramid levels without 
using the correct motion fields, choosing the estimate 
from the lowest pyramid level whose speed range was 

Horn and Schunck 
Lucas and Kanade (A, > 1.0) 

I Technique I Average I Standard I Density 1 
Error Deviation 
33.40' 16.46' 100% 
1.75' 1.43' 40.8% 

~ 

Technique 

~ . -  \ - -  , I  

Lucaa and Kanade (A, 2 5.0) 1 1.12' I 0.82' I 13.6% 
Uras et al. funthresholdedl I 12.48' I 17.52' I 100% 

Average Standard Density 
Error Deviation 

Horn and Schunck 

Lucas and Kanade (AT > 5.0) 
Lucas and Kanade (A, 2 1.0) 

~ 

9.85' 8.86' 100% 
3.05' 2.53' 49.4% 
2.32' 1.84' 24.8% 

1 Technique I AveraKe I Standard I Density 1 I Erro; I Deviation I I 

" 

Fleet and Jepson (7 = 1.25) I 4.95' I 12.39' I 30.6% 
Fleet and Jepson (7 = 2.5) I 4.29' I 11.24' I 34.1% 

Tables: (top) Translating Tree Results; (middle) Diverging 
Tree Results; (bottom) Yosemite Results 

consistent with the estimate. This produced poorer 
results - errors of 13.75' 

The phase-based method of Fleet and Jepson [12] 
produced the most accurate results. This is clear for 
the first two synthetic sequences, but not so clear for 
the Yosemite sequence. Interestingly, because only 15 
frames were available in this case, we had to to in- 
crease the tuning frequency of the filters to reduce the 
width of support (from 21 to 15 frames). But this 
also pushes the pass-band region of the filters over the 
fold-over rate, causing greater sensitivity to aliasing 
and corruption at high frequencies. As a consequence, 
component velocity estimates were considerably worse, 
and the stability constraint [20] was not as effective at 
separating reliable from unreliable estimates. In fact, 
2-d velocity estimates were improved slightly by relax- 
ing this constraint, thereby creating larger systems of 
equations to average out some of the noise. 

4.2 Real Image Data 
The remaining figures show (miniature versions of) 

the flow fields for produced by five techniques, exclud- 
ing the method of Horn and Schunck when applied to 
the two real image sequences. The Lucas and Kanade 
method was applied with a threshold of A2 2 1. De- 
spite our questionable success with confidence thresh- 

23.06'. 
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Figure 2: The left and right columns show computed 
flow fields from the SRI and Nasa sequences for the 
methods of (top) Lucas and Kanade (threshold: 
XZ 2 1.0); (middle) Uras et al. (no thresholding); 
and (bottom) Anandan (no thresholding). 

olds for the methods of Uras et al., the result shown 
in Figure 2 are thresholded with d e t ( H )  > 1.5. For 
Anandan, the results are shown with no threshold used 
to separate more accurate subsets of the results. The 
results on the NASA sequence reflect this. The re- 
sults shown for Heeger's method were based on 3 lev- 
els combined as discussed above. The method of Fleet 
and Jepson (Figure 3) was applied with the stability 
constraint T = 1.25. 

5 Discussion 
This paper compares the performance of optical flow 

techniques, emphasising measurement accuracy. The 
most accurate methods are the local differential ap- 
proaches, where v is computed explicitly in terms of 
a locally constant or linear model. The phase-based 

Figure 3: The left and right columns show computed 
flow fields from the SRI and Nasa sequences for the 
methods of (top) Heeger; (bottom) Fleet and Jep- 
son (stability constraint: T = 1.25). 

method of Fleet and Jepson [12], and the first-order 
differential technique of Lucas and Kanade [25] were 
the most accurate. Techniques using global smooth- 
ness constraints appear to produce visually attractive 
flow fields, but in general they appear to be accu- 
rate enough for qualitative use only, and insufficient 
as precursors to the computation of egomotion and 
3-d structure. Furthermore, we find that the sensitiv- 
i ties involved in solving Heeger 's nonlinear minimiza- 
tion problem, finding SSD minima, or computing sec- 
ond derivatives are somewhat prohibitive. 

One of the important aspects of this work, reported 
more fully in [7], concerns the use of confidence mea- 
sures and thresholds. While many authors make no 
mention of confidence measures, we found that some 
form of confidence measure/threshold was crucial for 
all techniques in order to separate the inaccurate from 
the accurate. Not surprisingly, given the results above, 
we were most successful establishing reliable confi- 
dence measures for the methods of Fleet and Jepson, 
and Lucas and Kanade. In particular, they performed 
consistently well over all inputs. Although thresholds 
were used here to extract error statistics, in practice 
we imagine the confidence measure is not used to re- 
move estimates, but rather is passed with the estimate 
to subsequent stages of processing. 

But the accuracy of the measurements does not tell 
the entire story. Other factors, such as the computa- 
tional efficiency, storage requirements, temporal dura- 
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tion of measurement support, and measurement den- 
sity are also important. For example, it is clear from 
results above that although some methods appear to 
produce accurate estimates, their density of measure- 
ments is much lower than other methods with similar 
accuracy. This is evident with the 2nd-order differen- 
tial technique in relation to other methods. 

Furthermore, each method comes with a price. The 
simplest method, conceptually and computationally, is 
that of Lucas and Kanade [25]. The most expensive 
methods were those requiring a large number of fil- 
ters, notably the methods of Fleet and Jepson [12] and 
Heeger [17]. On the other hand, it is reasonable to ex- 
pect that with the appropriate hardware, the filtering 
should cease to be a severe limitation, and all tech- 
niques could be implemented in real-time. Further- 
more, all our convolution results were stored in float- 
ing point, and were not subsampled. More efficient 
encodings of the filter output should be possible with 
subsampling and quantization of the filter outputs as 
in [12] with only slightly less accurate measurements. 

Similar comment apply to the six methods with re- 
spect to their the temporal support. We find that 
smoothing in time and space is crucial to most meth- 
ods, especially those using numerical differentiation. 
Here, the numbers of frames required the methods of 
Fleet and Jepson [12, Lucas and Kanade [25], Uras et 
al. [31], and Heeger 1 171 were 21, 15, 12, and 7 respec- 
tively. The matching approach of Anandan requires 
only 2 frames. From this perspective it appears to 
do quite well, but it is difficult to compete with other 
techniques that exploit coherent structure of image in- 
tensity through time as well as space. 

Finally, it is important to remember the conditions 
under which these tests were performed. We assumed 
that temporal aliasing was not be a severe problem, 
and that intensity (or filtered versions) were differen- 
tiable. As discussed earlier, if temporal aliasing is seri- 
ous, then other approaches must be considered. Other 
important issues include occlusion and multiple veloc- 
ities. All techniques had problems at  occlusion bound- 
aries, not well reflected in the confidence measures. 
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