A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/1703.08151v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Extracting a uniform random bit-string over Jacobian of Hyperelliptic curves of Genus 2
[article]
<span title="2017-03-23">2017</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Here, we proposed an improved version of the deterministic random extractors SEJ and PEJ proposed by R. R. Farashahi in F in 2009. By using the Mumford's representation of a reduced divisor D of the Jacobian J(F_q) of a hyperelliptic curve H of genus 2 with odd characteristic, we extract a perfectly random bit string of the sum of abscissas of rational points on H in the support of D. By this new approach, we reduce in an elementary way the upper bound of the statistical distance of the
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1703.08151v1">arXiv:1703.08151v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zawcse3yangtjktw7uyuanbd5q">fatcat:zawcse3yangtjktw7uyuanbd5q</a>
</span>
more »
... istic randomness extractors defined over F_q where q=p^n, for some positive integer n≥ 1 and p an odd prime.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200824221109/https://arxiv.org/pdf/1703.08151v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/ac/85/ac853950d4f9d8bfffeccfc8ce8bdb5f02093409.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1703.08151v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>