Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds [article]

Krishnendu Chatterjee, Hongfei Fu, Aniket Murhekar
2017 arXiv   pre-print
We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. Several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., QUICK-SORT), or completely ineffective (e.g., COUPON-COLLECTOR). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic,
more » ... near, or almost-linear (O( n), O(n), O(n· n), respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. Our approach can infer the asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including RANDOMIZED-SEARCH, QUICK-SORT, QUICK-SELECT, COUPONCOLLECTOR, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic of expected-runtime, or quadratic as compared to linear or almost-linear of expected-runtime), or ineffective. We have implemented our approach, and the experimental results show that we obtain the bounds efficiently for the recurrences of various classical algorithms.
arXiv:1705.00314v1 fatcat:77uvfirphfadlfrcttspsvc2fa