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Abstract

The method of transportation and the conditions imposed on the ovarian tissue are pivotal aspects for the success of ovarian tissue 
cryopreservation (OTC). The aim of this study was to evaluate the effect of the size of the ovarian tissue (e.g. whole ovary, biopsy size 
and transplant size) during different times of storage (0, 6, 12 and 24 h) on the structural integrity of equine ovarian tissue 
transported at 4°C. Eighteen pairs of ovaries from young mares (<10 years old) were harvested in a slaughterhouse and processed to 
simulate the fragment sizes (biopsy and transplant size groups) or kept intact (whole ovary group) and stored at 4°C for up to 24 h in 
α-MEM-enriched solution. The effect of the size of the ovarian tissue was observed on the morphology of preantral follicles, stromal 
cell density, DNA fragmentation and mitochondrial membrane potential. The results showed that (i) biopsy size fragments had more 
morphologically normal preantral follicles after 24 h of storage at 4°C; (ii) mitochondrial membrane potential was the lowest during 
each storage time when the whole ovary was used; (iii) DNA fragmentation rate in the ovarian cells of all sizes of fragments increased 
as storage was prolonged and (iv) transplant size fragments had increased stromal cell density during storage at cool temperature. 
In conclusion, the biopsy size fragment was the best to preserve follicle morphology for long storage (24 h); however, 
transportation/storage should be prior determined according to the distance (time of transportation) between patient and 
reproduction centers/clinics.
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Introduction

Transportation of ovaries or ovarian fragments has 
garnered increasing interest after the development of 
new techniques that are able to cryopreserve ovarian 
tissue and restore fertility followed by a transplantation 
procedure (Gosden  et  al. 1994, De Vos  et  al. 2014, 
Dolmans  et  al. 2014, Silber  et  al. 2015, Devi & Goel 
2016). The method of transportation and the conditions 
imposed on the ovarian tissue are pivotal aspects 
for the success of ovarian tissue cryopreservation 
(OTC) observed by several reproductive centers 
around the world (Gosden  et  al. 1994, Hovatta  et  al. 
1996, Newton  et  al. 1996, Gook & Edgar 1999) to 
preserve the fertility potential (Dittrich  et  al. 2012, 
2015, Muller  et  al. 2012, Bastings  et  al. 2014, 
Jensen et al. 2015). Cryopreservation and ovarian tissue 
transplantation have shown successful results in humans 
and animals (Baird  et  al. 2004, Bordes  et  al.  2005, 
Donnez  &  Dolmans 2013, Isachenko  et  al. 2013, 

Ting  et  al. 2013, Fabbri  et  al. 2016). The use of OTC 
prior to the initiation of cancer treatments and graft of 
cryopreserved ovarian fragments after treatment has 
become more common and allowed the birth of more 
than 60 babies worldwide (Donnez & Dolmans 2015). 
Recently, OTC has been classified as an innovative 
treatment according to the criteria of the American 
Society for Reproductive Medicine (ASRM), European 
Society of Human Reproduction and Embryology 
(ESHRE) and the special interests groups ‘Ethics and 
Law’ and ‘Safety and Quality in Assisted Reproductive 
Technology’ and no longer been considered as an 
experimental technique (Provoost et al. 2014, Donnez 
& Dolmans 2015, Van der Ven et al. 2016). However, 
the majority of hospitals and/or clinics do not have the 
required trained staff, specialized equipment, designated 
space and time to prepare and freeze the ovarian cortex 
to perform OTC (Backhus et al. 2007, Practice Committee 
of American Society for Reproductive Medicine 2014). 
Furthermore, in the case of animals, OTC has been 
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applied to preserve germ cells of animals considered to 
have high genetic value and to endangered wild species 
(Comizzoli & Wildt 2013), and several times, the ovary 
or ovarian sample is collected in the wild, zoos or farms, 
usually at a great distance from reproductive centers. In 
those cases, a proper transport of the ovarian tissue is 
needed to preserve the fertility potential. Nevertheless, 
the method of transportation of ovarian specimens is still 
a barrier to overcome. Few studies have been conducted 
regarding transportation or storage of fresh specimens 
to use the maximum capability of the ovarian reserve 
(Isachenko  et  al. 2015). In fact, the number of viable 
primordial follicles in the ovarian tissue is decisive for 
a potential clinical benefit. Therefore, preservation of 
ovarian samples using special medium and adequate 
temperature during transportation have been necessary 
(Chaves et al. 2008, Tellado et al. 2014). Furthermore, 
because the OTC process per se leads to damages in the 
tissue and significant loss of preantral follicles, further 
ovarian tissue damage should be minimized during 
transportation of specimens (Schmidt et al. 2003).

Induced hypothermia to approximately 4°C has been 
the most common approach used for transport of organs 
to be preserved (Isachenko et al. 2009b, Cantu & Zaas 
2011). Currently, protocols to transport ovaries have 
been proposed for different species, such as bovine 
(Celestino  et  al. 2008), caprine (Chaves  et  al. 2008), 
ovine (Matos  et  al. 2004), swine (Wongsrikeao  et  al. 
2005) and equine (Gomes  et  al. 2012). However, 
studies have shown a large variation in fragment size 
from whole ovary (Kamoshita et al. 2016) to very small 
fragments (<1 mm thickness; Lan et al. 2010) submitted 
to transport, cryopreservation and/or transplantation. 
Consequently, a large variation in follicle survival has 
been noticed among studies using different animal 
models, such as goats (Silva  et  al. 2000), sheep 
(Barberino  et  al. 2016), cattle (Lucci  et  al. 2004), 
horses (Gomes  et  al. 2012), dogs (Lopes  et  al. 2009, 
Lima  et  al. 2010), mice (Kamoshita  et  al. 2016), non-
human primates (Ting et al. 2011, Hornick et al. 2012) 
and women (Isachenko  et  al. 2009a, Lan  et  al. 2010, 
Sanfilippo et al. 2013, Wang et al. 2016). Nevertheless, 
the effect of ovarian fragment size and the time of storage 
during transportation have been considered a limiting 
factor briefly explored (Barberino et al. 2016). In human 
clinical situations, most of the clinicians harvest biopsy 
slices from the ovarian cortex or one whole ovary, 
preserving the contralateral ovary in the original site 
(Rice et al. 2008, Silber 2016). In veterinary medicine, 
the technique to harvest ovarian biopsy fragments is 
well established in cattle (Aerts et al. 2005) and horses 
(Haag  et  al. 2013a), facilitating the studies of ovarian 
tissue preservation. Therefore, the development of 
protocols to transport ovarian tissue for cryopreservation, 
culture and/or transplantation must be optimized to 
ensure the success of reproductive biotechnologies in 
animals and humans.

The use of human ovaries for OTC studies is scarce 
when compared to animal models due to ethical barriers 
and the limited availability of material for research. 
Considering the similarities between women and mares 
related to follicular waves and hormonal changes 
(Ginther et al. 2004, 2005, Mihm & Evans 2008, Baerwald 
2009), preovulatory follicle characteristics before 
ovulation (Martinuk et al. 1992, Pierson & Chizen 1994, 
Gastal 2009), ovarian aging process (Carnevale 2008, 
Ginther et al. 2008, 2009, Alves et al. 2016b), acyclic 
conditions and anovulatory dysfunctions (Gastal  et  al. 
2006, Ginther et al. 2007, Cuervo-Arango et al. 2011, 
Bashir  et  al. 2016), ovarian monovulatory function 
with a long follicular phase (Carnevale 2008, Gastal 
2009, 2011), heterogeneity of preantral follicle density 
(Haag  et  al. 2013a,c), Alves  et  al. 2016b), preantral 
follicle survivability and growth rate after in vitro culture 
of fresh ovarian tissue (Haag et al. 2013b, Aguiar et al. 
2016a,b), relationship of preantral follicle density 
and ovarian stromal cell density (Alves  et  al. 2016a) 
and similar permeability/toxicity of ovarian tissue to 
different cryoprotective agents (CPAs; Gastal  et  al. 
2016), the mare can be considered an important animal 
model to advance knowledge regarding ovarian tissue 
transportation to be used in OTC and transplantation. 
Thus, studies with mare ovarian tissue may provide 
relevant information that could also be applied in the 
future on clinical human reproduction.

The aim of this study was to evaluate the effect of the 
size of the ovarian tissue (e.g., whole ovary, biopsy size 
and transplant size) during different times of storage (0, 6, 
12 and 24 h) on the structural integrity of equine ovarian 
tissue transported at 4°C. The end points evaluated 
were ovarian tissue viability, mitochondrial membrane 
potential, ROS production, DNA fragmentation, 
preantral follicle morphology and class distribution and 
stromal cell density.

Materials and methods

Chemicals

All reagents were purchased from Sigma-Aldrich unless 
otherwise stated.

Ovarian tissue collection and processing

Ovaries (n = 36) of 18 young post-pubertal mares (3–10 years 
old) were harvested in a slaughterhouse. Briefly, after the 
removal of the mesovarium structures, ovaries were rinsed 
in alcohol 70%, followed by three washes in saline solution 
(0.9% NaCl) supplemented with antibiotics (100 µg/mL 
penicillin and 100 µg/mL streptomycin) at room temperature 
(22°C). Subsequently, ovaries were placed in the α-MEM 
solution containing 1.25 mg/mL bovine serum albumin (BSA), 
100 µg/mL penicillin, 100 µg/mL streptomycin, 0.047 mM 
sodium pyruvate and 2.5 mM Hepes (Haag  et  al. 2013b) at 
room temperature for further processing and transportation. 
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The ovaries were divided into three longitudinal portions (two 
laterals and one middle); only the middle portion of the ovary 
was used to collect fragments for this study. The previously 
mentioned procedures were performed within 15 min.

Experimental design

Three sizes of ovarian tissue (treatment groups: whole ovary, 
biopsy size (2 × 2 × 12 mm) and transplant size (0.5 × 1 × 1 mm)) 
were compared after 0 (control group), 6, 12 or 24 h of storage 
at 4°C. The ovarian fragment simulation for the transplant size 
group was based in the literature (Aerts et al. 2008, Abir et al. 
2009, Li et al. 2016), and for the biopsy size group, it was based 
on the size of the specimen notch of the needle used for in vivo 
biopsy collection performed by our research team (Haag et al. 
2013a,b,c, Alves et al. 2016a,b, Gastal et al. 2016). A Thomas 
Stadie-Riggs Tissue Slicer (Thomas Scientific, Swedesboro, 
NJ, USA) was used to produce thin slices (0.5 mm) of ovarian 
fragments for the transplant size and control groups. Fragments 
for the biopsy and transplant size groups, and control group, 
were prepared using scalpels and tweezers. Fragments for the 
control group were sliced according to the transplant size 
group and immediately fixed in 4% paraformaldehyde. One 
ovary of each mare (n = 3/replicate) was processed immediately 
to produce the necessary fragments to be randomly distributed 
among the control (0 h), biopsy and transplant size groups 
and respective times (6, 12 or 24 h). The contralateral ovary of 
each mare (n = 3/replicate) was used for transportation at 4°C, 
being assigned as the whole ovary size group to one of the 
three times of transportation (6, 12 or 24 h). Ovaries (whole 
group) and ovarian fragments from the biopsy and transplant 
size groups were transported from the slaughterhouse to the 
laboratory (4-h trip) in a styrofoam box containing ice packs; 
temperature (4°C) was controlled with a digital thermometer. In 
the laboratory, specimens were maintained in the refrigerator 
(4°C) throughout the necessary times. After the time of storage 
for whole ovary and biopsy size treatments, fragments were 
cut and standardized in similar sizes (0.5 × 1 × 1 mm) before 
being fixed or submitted to tissue viability assays. The ovarian 
fragments were not checked for the presence of preantral 
follicles prior to assigning them to each treatment group. 
From our experience (data not shown), we know that >90% 
of the preantral follicles are located in the middle portion of 
the equine ovary; thus, we used this approach for preparing 
fragments. Therefore, the chance of a fragment with a given 
number of follicles was randomly distributed among treatment 
groups. For each replicate, six ovaries from three mares were 
used. Six replicates were performed.

Tissue viability assays

Ovarian fragments from every group and time were assessed 
by fluorescent probes for cell viability (5[6]-carboxyfluorescein 
diacetate succinimidyl ester, CFDA-SE, Molecular Probes, 
Invitrogen; Oktay  et  al. 1997, Newton  et  al. 1999, 
Chambers  et  al. 2010), mitochondrial membrane potential 
(JC-1, Molecular Probes, Invitrogen; Smiley  et  al. 1991) and 
reactive oxygen species (ROS, H2DCFDA; Fabbri et al. 2014).  

For cell viability, fragments were incubated in 5.57 µg/
mL CFDA-SE for 30 min, and then incubated in 100 µg/
mL propidium iodide for 5 min at 37°C. For mitochondrial 
membrane potential, fragments were incubated in 2 µL/mL JC-1 
for 30 min at 37°C. For ROS assay, fragments were incubated in 
1 µL/mL H2DCFDA for 30 min, and then incubated in 100 µg/
mL propidium iodide for 5 min at 37°C. Five fragments/group/
replicate were used for each of the three assays described 
previously. After the incubation period of each fluorescent 
probe, fragments were fixed in 4% paraformaldehyde at room 
temperature for 15 min, and then transferred to PBS solution 
for up to 1 h at room temperature protected from light for 
fluorescent image analysis. Fragments were mounted on a 
slide for confocal laser scanning microscopy analyses (Zeiss 
LSM 710). For each sample, five randomly selected regions 
of interest with 1024 × 1024 pixels were drawn to measure 
the fluorescence intensity. Parameters related to fluorescence 
intensity, such as laser energy, signal detection (gain) and 
pinhole size, were maintained at constant values for all 
measurements. Fragments were observed at 630× objective 
magnification under oil immersion. A helium/neon laser ray 
at 543 nm (551 nm excitation and 576 nm emission) was used 
to identify the propidium iodide and JC-1. An argon ion laser 
ray at 488 nm (495 nm excitation and 519 nm emission) was 
used to identify the CFDA-SE and H2DCFDA. Scanning was 
conducted with Z stack of 25 optical series from the top to the 
bottom of the fragments with a step size of 0.08 mm to allow 
three-dimensional distribution analysis.

Histological processing

Additional ovarian fragments (n = 5 fragments) from every 
group and time were fixed in 4% paraformaldehyde for 1 h and 
then kept in 70% alcohol at 4°C until standard histological 
processing. The fragments were embedded in paraffin wax and 
totally cut into serial sections (7 µm; Alves et al. 2015). Every 
section was mounted and stained with periodic acid-Schiff 
(PAS) and counterstained in hematoxylin. Histological sections 
were analyzed using a light microscope (Nikon E200) at 40× 
objective magnification and an image capture system (Leica 
Imaging Software, Wetzlar, Germany). The following end 
points were recorded: preantral follicle morphology (normal 
and abnormal), preantral follicle class distribution and ovarian 
stromal cell density.

Morphological classification of preantral follicles

For morphological classification, within each replicate, 
5 ovarian fragments were used. The 5 fragments were blocked 
together, producing 8 slides, each with 8–10 sections evaluated 
(total = 75 sections per treatment per replicate; a total of 1350 
sections were evaluated for preantral follicle morphology). 
Preantral follicles with visualized oocyte nucleus were 
counted and morphologically classified as either normal 
(follicles containing an intact oocyte and oocyte nucleus 
surrounded by granulosa cells well organized in one or more 
layers) or abnormal (follicles with a retracted cytoplasm or 
disorganized granulosa cell layers detached from the basement 
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membrane and oocyte with pyknotic nucleus; Hulshof et al. 
1994). Preantral follicles were classified according to their 
developmental stages into primordial, transitional, primary 
and secondary (Haag et al. 2013c).

Ovarian stromal cell density

Ovarian stromal cell density was evaluated as described 
(Alves  et  al. 2016a). Briefly, a total of 10% of histological 
sections of all fragments of each group were analyzed. Four 
random fields (each with 50 × 50 µm = 2500 µm2) per selected 
section were recorded to calculate the mean stromal cell 
density per ovarian fragment.

TUNEL assay

For TUNEL assay, within each replicate, 5 ovarian fragments 
were used. The 5 fragments were blocked together, producing 
3 slides, each with 2 sections evaluated (total = 6 sections per 
treatment per replicate). TUNEL staining was carried out using 
a commercially available kit (DeadEnd Colorimetric TUNEL 
System; Promega) following the manufacturer’s instructions. 
Tissue sections were examined under light microscope 
(Olympus BX 51, America Inc.), and six images of each group 
within each replicate (n = 36 images/group) were obtained in 
20× objective magnification to calculate the pixel intensity of 
TUNEL-positive cells using the ImageJ software (version 1.50f). 
Therefore, a total of 108 images were obtained from randomly 
selected regions of interest with 1280 × 960 pixels to measure 
the fluorescence intensity of TUNEL-positive cells. TUNEL-
positive and -negative controls were included in all evaluations, 
according to the manufacturer’s recommendations.

Statistical analysis

All statistical analysis were performed using R statistical 
software, version 3.0.2 (R Foundation for Statistical Computing, 
Vienna, Austria). Data for CFDA-SE, JC-1 and H2DCFDA were 
not normally distributed; therefore, data were transformed 
and presented in base 10 logarithm (Log10). Variables without 
normal distribution were analyzed by Kruskal–Wallis test and 
Wilcoxon–Mann–Whitney test. Mean percentage of normal 
preantral follicles, stromal cell density and TUNEL were 
analyzed by ANOVA and Tukey’s test. A probability of P < 0.05 
indicated that a difference was significant, and P > 0.05 and 
≤0.1 indicated that a difference approached significance.

Results

Ovarian tissue viability, mitochondrial membrane 
potential and ROS production

The ovarian tissue viability (CFDA-SE) in the whole 
ovary, biopsy size and transplant size groups did not 
differ (P > 0.05) from the fresh control group when 
stored at 4°C for up to 24 h (Fig. 1). However, after 6 h of 
storage, the transplant size group had a greater (P < 0.05) 
viability compared to that in the biopsy size group.

The mitochondrial membrane potential (JC-1) of 
the whole ovary group was lower (P < 0.05) at 6 and 

24 h of storage compared to that in the fresh control 
group (Fig. 2). In the biopsy size group, the membrane 
potential was lower (P < 0.05) after 24 h compared to 
that in the control group. The transplant size group had a 
greater (P < 0.05) mitochondrial membrane potential at 
6 and 12 h of storage and was similar (P > 0.05) at 24 h, 
compared with the control group. Within each time of 
storage, the whole ovary group had the lowest (P < 0.05) 
mitochondrial membrane potential and the transplant 
size group the greatest (P < 0.05). The ROS production 
(H2DCFDA) in the ovarian tissue did not differ (P > 0.05) 
among groups (data not shown).

DNA fragmentation

Regardless of treatment, the DNA fragmentation 
increased (P < 0.05) in ovarian cells after 24 h of storage 
at 4°C compared to that in the control group (Fig. 3). 
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Figure 1 (A) Mean (±s.e.m.) fluorescence intensity of CFDA-SE (Log10) 
to evaluate tissue viability in different fragment sizes (whole ovary, 
biopsy or transplant) of equine ovarian tissue stored at 4°C for up to 
24 h. †Indicates a difference (P < 0.05) between treatments at one 
time point. No difference (P > 0.05) between the control and treated 
groups was detected. (B) Illustrative image of merged CFDA and PI 
in equine fresh ovarian tissue; scale bar = 100 pixels.
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In addition, the whole ovary and biopsy size groups had 
an increase (P < 0.05) in DNA fragmentation between 
6 and 24 h. However, the transplant size group had a 
similar (P > 0.05) DNA fragmentation throughout the 
storage time.

Preantral follicle class distribution and morphology

Overall, 3061 preantral follicles were recorded, and 
the majority was classified as primordial (69.3%), 
followed by transition (28.4%), primary (2.0%) and 
secondary (0.3%) follicles among all groups. The rate of 
morphologically normal follicles was 69.9% among all 
groups, with 86.3% being normal in the fresh control 
group. A mean of 306.1 ± 91.4 (range: 41–1012) 
preantral follicles were evaluated per group and time 
of storage. The mean percentage of normal follicles 
decreased (P < 0.05) in all groups in all storage times 
compared with the fresh control group, except for the 
whole ovary and transplant size groups at 6 h of storage 
at 4°C (Fig. 4). Moreover, after 6 h of storage, the whole 
ovary group had a greater (P < 0.05) percentage of 
morphologically normal follicles than the biopsy size 
and transplant size groups. However, after 12 and 24 h 
of storage, the percentage of normal follicles was greater 
(P < 0.05) in the biopsy size group compared with whole 
ovary and transplant size groups. When analyzing the 
groups across times of storage, the whole ovary and 
transplant size groups had lower (P < 0.05) percentages 
of morphologically normal follicles after 12 h and 24 h 

of storage, whereas the biopsy size group was reduced 
(P < 0.05) only after 24 h of storage.

Stromal cell density

The ovarian stromal cell density differed (P < 0.05) among 
groups (Fig. 5). The ovarian stromal cell density in the 
fresh control group ranged from 15 to 46 cells/2500 µm2 
(CV% = 23.3%). The biopsy size and the whole ovary 
groups had lower (P < 0.05) stromal cell density after 12 
and 24 h of storage respectively, when compared with 
the control group. The transplant size group had the 
greatest (P < 0.05) stromal cell density compared with 
that in the control group throughout all storage times.

Discussion

To our knowledge, this is the first study to report the effect 
of size of equine ovarian tissue stored at 4°C for up to 
24 h on ovarian tissue viability, mitochondrial membrane 
potential, ROS production, DNA fragmentation, 
morphology and classification of preantral follicles 
and stromal cell density. The main findings of the 
present study were (i) biopsy size fragments had more 
morphologically normal preantral follicles after 24 h of 
storage at 4°C; (ii) the viability of ovarian cells and ROS 
production were not disturbed during storage at 4°C for 
up to 24 h regardless of the size of the ovarian fragments; 
(iii) mitochondrial membrane potential was the lowest 
during each time of storage when the whole ovary was 
used; (iv) DNA fragmentation rate in the ovarian cells of 
all sizes of fragments increased as storage was prolonged 
and (v) transplant size fragments had increased stromal 
cell density during storage at a cool temperature.

The present study has shown that ovarian biopsy 
size fragments had more than 60% morphologically 
normal preantral follicles after being stored at 4°C for 
24 h in α-MEM solution enriched with BSA and pyruvic 
acid; the whole ovary and transplant size groups had 
less than 50% and 20% normal follicles after the same 
period of storage respectively. The only study in horses 
(Gomes  et  al. 2012) that has evaluated the quality of 
preantral follicles enclosed in ovarian tissue during 
transportation, but not the size of fragments, reported 
27, 11 and 3% of morphologically normal follicles in 
fragments (1 × 3 × 3 mm) stored in MEM solution at 4°C 
after 4, 12 and 24 h respectively. However, the lower 
rates of morphologically normal follicles preserved in the 
study performed by Gomes and coworkers (Gomes et al. 
2012) may not be suitable for transportation of ovarian 
specimens from large distances between animal (patient) 
and specialized centers. To our knowledge, the only 
study (Barberino et al. 2016) that has evaluated the effect 
of ovarian fragment size (whole ovary, 1/2, 1/4 or 1/8 of 
the ovary) stored at 4°C for up to 24 h was performed 
in sheep. The sheep study reported that the smallest 
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Figure 2 Mean (±s.e.m.) fluorescence intensity of JC-1 (Log10) to 
evaluate mitochondrial membrane potential in different fragment 
sizes (whole ovary, biopsy or transplant) of equine ovarian tissue 
stored at 4°C for up to 24 h. *Treatment groups differ from fresh 
control group (P < 0.05). A,BWithin group, columns without a 
common superscript differed (P < 0.05). a,bWithin time, groups 
without a common superscript differed (P < 0.05).

Downloaded from Bioscientifica.com at 12/05/2018 06:44:54PM
via free access



G D A Gastal and others582

Reproduction (2017) 153 577–587 www.reproduction-online.org

fragments had more normal preantral follicles than the 
middle sizes and the whole ovary after 24 h of storage. 
However, the definition of fragment sizes used in the 
sheep study has not considered some important factors, 

such as natural/individual variation of the ovarian 
size, and the presence of large ovarian structures (e.g., 
preovulatory follicle and corpus luteum) that may affect 
the ovarian dimension and, consequently, the exact 

Figure 3 (A) Mean (±s.e.m.) intensity of TUNEL 
staining per unit area to evaluate DNA 
fragmentation in different fragment sizes 
(whole ovary, biopsy or transplant) of equine 
ovarian tissue stored at 4°C for up to 24 h. 
*Treatment groups differ from fresh control 
group (P < 0.05). A,BWithin group, columns 
without a common superscript differed 
(P < 0.05). No difference (P > 0.05) among 
groups within each time point was detected. 
(B) Positive and (C) negative assay controls. 
For positive controls, the sections were 
incubated in DNase I (5 unit/mL) for 10 min; 
and negative controls, the sections were 
incubated in buffer without rTdT enzyme, as 
described in the manufacturer’s instructions. 
(D) Control 0 h; whole ovary (E) 6 h, (F) 12 h 
and (G) 24 h; biopsy size (H) 6 h, (I) 12 h and 
(J) 24 h; and transplant size (K) 6 h, (L) 12 h and 
(M) 24 h; scale bar = 50 µm.
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final size of the fragment. Furthermore, because the 
exact size of the fragments with stromal tissue was 
not defined, it is difficult to reproduce similar results 
to determine precisely the main effect of the size of 
the fragment on storage/transportation. In the present 
study, the biopsy and transplant fragment sizes have 
been standardized, allowing a precise interpretation of 
size effect. In addition, studies have evaluated different 
types of medium for transport and storage of ovarian 
fragments at cool temperatures and have shown relevant 
results regarding the preservation of preantral follicle 
morphology (Dittrich et al. 2012, Isachenko et al. 2012, 
Kamoshita  et  al. 2016). However, the aforementioned 
studies have shown a large variation in the results 

(range, 40–90% of morphologically normal follicles), 
which might be due to different fragment sizes among 
studies. Moreover, the enriched solution used in our study 
might have contributed to preserving the ovarian tissue 
for a longer period. Better pH and osmolality control, and 
enrichment of nutrients, can increase the resistance of 
organs and tissues due to the lack of oxygenation during 
hypothermia, reduce REDOX activity and therefore, 
prolong the cell survivability (Guibert et al. 2011).

The most common organ preservation technique for 
transport is inducing hypothermia to approximately 4°C 
(Cantu & Zaas 2011). Cooling is necessary to reduce 
cellular metabolism and the requirements for oxygen to 
prevent tissue injury; however, at 4°C, there are some 
metabolic rates remaining (Guibert  et al. 2011). In the 
present study, the cell viability and ROS production in 
the equine ovarian tissue stored at 4°C for up to 24 h have 
not been disturbed. However, mitochondrial membrane 
potential decreased after 24 h of storage in whole ovary 
and biopsy size fragments. Although ROS production 
in the equine ovarian tissue did not increase as storage 
was prolonged, this study has shown an increase of 
DNA damage in the ovarian cells only after 24 h. The 
lower metabolic rate due to cool temperatures reduces 
mitochondrial enzyme activity, which in turn reduces the 
accumulation of lactic acid and slows down the decrease 
in intracellular pH, proteolysis, lipolysis and lipid 
peroxidation associated with ischemia (Guibert  et  al. 
2011). BSA has been commonly used in medium 
supplementation due to its important functions, such as 
solution stabilization during storage at cooling or freezing 
temperatures, binding and transport of important ligands 
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Figure 4 (A) Mean (±s.e.m.) percentage of morphologically normal 
preantral follicles enclosed in different fragment sizes (whole ovary, 
biopsy or transplant) of equine ovarian tissue stored at 4°C for up to 
24 h. *Treatment groups differ from fresh control group (P < 0.05). 
A,BWithin group, columns without a common superscript differed 
(P < 0.05). a,bWithin time, groups without a common superscript 
differed (P < 0.05). The number of preantral follicles evaluated per 
group and time of storage ranged from 41 to 1012. (B, C, D, E, F and 
G) Illustrative images of equine preantral follicles enclosed in biopsy 
ovarian fragments stored for 24 h at 4°C; (B) normal and (E) abnormal 
primordial follicles; (C) normal and (F) abnormal primary follicles; 
(D, G) cluster of primordial follicles; (B, C, E, F) scale bar = 20 µm; 
(D, G) scale bar = 50 µm.
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and as antioxidant (Francis 2010). Pyruvic acid has been 
reported to eliminate hydrogen peroxide and its toxic 
effects from the culture medium (Giandomenico  et  al. 
1997) and maintain cell metabolism (Geshi  et  al. 
2000). Therefore, we suggest that the enriched α-MEM 
medium with BSA and pyruvic acid used in this study 
was able to control and avoid the apoptosis caused by 
ROS production, prolonging the equine ovarian tissue 
preservation at 4°C. Nevertheless, when a proper 
transportation solution, control of temperature and 
standard of the fragment size are used within a feasible 
time of transport in cooling temperatures, the DNA 
fragmentation that occurs in the ovarian tissue during 
storage seems to be ROS independent.

In horses, stromal cell density has a strong relationship 
with the number and density of preantral follicles 
(Alves et al. 2016a, Gastal et al. 2016). The stromal cell 
density has a major role in protecting and supporting 
the recruitment and development of preantral follicles 
(Knight & Glister 2006). The present study is the first to 
evaluate the effect of ovarian fragment size during storage 
at cooling on stromal cell density. In this study, small 
fragments (0.5 × 1 × 1 mm) stored at 4°C had an increase 
in the ovarian stromal cell density compared with fresh 
control tissue. Conversely, larger-sized fragments (biopsy 
size and whole ovary groups) had a decrease in stromal 
cell density during storage compared to those in fresh 
tissue. These effects might have been caused by surface-
to-volume ratio during the cooling stage (Herraiz et al. 
2016). Therefore, small fragments may shrink before 
penetration and equilibration of the solution within the 
cell, whereas in larger tissues, the cooling curve occurs 
slowly, and thus, the solution can better penetrate the 
cells leading to swelling and reduction of stromal cell 
density per area. Although variation in stromal cell 
density in the different fragment sizes after storage was 
observed, the stromal cells were still physiologically 
viable based on the parameters studied herein.

In conclusion, the findings described in the present 
study provide new perspectives for transporting equine 
preantral follicles enclosed in ovarian tissue for long 
distances. Therefore, the biopsy fragment size was the 
best to preserve follicle morphology for long storage 
(24 h). Translation of this work to other animal species 
and humans may lead to significant advancements 
regarding methodologies for fertility preservation. 
The size of ovarian fragment played a major role in 
preserving preantral follicles during ovarian tissue 
transportation. The enriched transport medium herein 
used was potentially beneficial to preserve the ovarian 
cell viability during storage at 4°C for up to 24 h, 
thus allowing greater chances of success for future 
cryopreservation and/or grafting processes. Therefore, 
the size of the ovarian fragment for transportation/
storage should be prior determined according to the 
distance (time of transportation) between patient and 
reproduction center/clinics.
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