Analysis of Wildfire Detection using CNN Model

Akshatha V, K R Sumana
2022 International Journal for Research in Applied Science and Engineering Technology  
Abstract: Forest is viewed as one of the most significant and essential asset. It is an enormous surface of region loaded up with trees, bunches of dried leaves, woods, etc. These components support the fire when it begins. The fire can be lighted through many reasons, for example, high temperature in summer seasons, smoking, or firecrackers. When fire begins, it will stay until it recognized totally. The harm and the expense for recognize firein view of wild fire can be decreased when the fire
more » ... distinguished right on time as could be expected. Thus, the fire discovery is significant in this situation. There are various kinds of fire location techniques utilized by the Government specialists, for example, satellite observing, tower checking, utilizing sensors, optical cameras, etc. In any case, these strategies actually have a few disadvantages in distinguishing the beginning phase of the fire. In our project, we propose an original framework for distinguishing wildfire utilizing Convolutional Neural Networks (CNN). CNN and a classification network, named ResNet50 is used as a feature extraction network to achieve rapid and accurate extraction of image feature information.
doi:10.22214/ijraset.2022.46157 fatcat:4q5652fiz5c5fdpmuflvai6f3a