Reinforcement Learning for Combinatorial Optimization: A Survey [article]

Nina Mazyavkina and Sergey Sviridov and Sergei Ivanov and Evgeny Burnaev
2020 arXiv   pre-print
Many traditional algorithms for solving combinatorial optimization problems involve using hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed by domain experts and may often be suboptimal due to the hard nature of the problems. Reinforcement learning (RL) proposes a good alternative to automate the search of these heuristics by training an agent in a supervised or self-supervised manner. In this survey, we explore the recent advancements of applying RL
more » ... ameworks to hard combinatorial problems. Our survey provides the necessary background for operations research and machine learning communities and showcases the works that are moving the field forward. We juxtapose recently proposed RL methods, laying out the timeline of the improvements for each problem, as well as we make a comparison with traditional algorithms, indicating that RL models can become a promising direction for solving combinatorial problems.
arXiv:2003.03600v3 fatcat:ofc6gzf2fzhchjawbxfiin3354