One-dimensional gravity in infinite point distributions
A. Gabrielli, M. Joyce, F. Sicard
2009
Physical Review E
The dynamics of infinite, asymptotically uniform, distributions of self-gravitating particles in one spatial dimension provides a simple toy model for the analogous three dimensional problem. We focus here on a limitation of such models as treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e. the definition requires explicitly the breaking of statistical translational invariance). The
more »
... blem arises because naive background subtraction (due to expansion, or by "Jeans' swindle" for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N-body simulations. For identical particles the dynamics of the simplest toy model is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss previous results in the literature, and present new results for the specific case of this simplest (static) model starting from "shuffled lattice" initial conditions. These show qualitative properties (notably its "self-similarity") of the evolution very similar to those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.
doi:10.1103/physreve.80.041108
pmid:19905274
fatcat:2cvsqmef45cqtnzuzntzi46jea