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ABSTRACT
Topic modeling can reveal the latent structure of text data and is
useful for knowledge discovery, search relevance ranking, docu-
ment classification, and so on. One of the major challenges in
topic modeling is to deal with large datasets and large numbers
of topics in real-world applications. In this paper, we investigate
techniques for scaling up the non-probabilistic topic modeling ap-
proaches such as RLSI and NMF. We propose a general topic mod-
eling method, referred to as Group Matrix Factorization (GMF),
to enhance the scalability and efficiency of the non-probabilistic
approaches. GMF assumes that the text documents have already
been categorized into multiple semantic classes, and there exist
class-specific topics for each of the classes as well as shared top-
ics across all classes. Topic modeling is then formalized as a prob-
lem of minimizing a general objective function with regularizations
and/or constraints on the class-specific topics and shared topics. In
this way, the learning of class-specific topics can be conducted in
parallel, and thus the scalability and efficiency can be greatly im-
proved. We apply GMF to RLSI and NMF, obtaining Group RLSI
(GRLSI) and Group NMF (GNMF) respectively. Experiments on
a Wikipedia dataset and a real-world web dataset, each contain-
ing about 3 million documents, show that GRLSI and GNMF can
greatly improve RLSI and NMF in terms of scalability and effi-
ciency. The topics discovered by GRLSI and GNMF are coherent
and have good readability. Further experiments on a search rele-
vance dataset, containing 30,000 labeled queries, show that the use
of topics learned by GRLSI and GNMF can significantly improve
search relevance.

Categories and Subject Descriptors: H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing

General Terms: Algorithms, Experimentation

Keywords: Matrix Factorization, Topic Modeling, Large Scale

1. INTRODUCTION
Topic modeling refers to machine learning technologies whose

aim is to discover the hidden semantic structure existing in a large
collection of text documents. Given a collection of text documents,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

a topic model represents the relationship between the terms and the
documents through latent topics. A topic is defined as a probability
distribution over terms or a cluster of weighted terms. A document
is viewed as a bag of terms generated from a mixture of latent top-
ics. Many topic modeling methods, such as Latent Semantic Index-
ing (LSI) [7], Probabilistic Latent Semantic Indexing (PLSI) [11],
Latent Dirichlet Allocation (LDA) [5], Regularized Latent Seman-
tic Indexing (RLSI) [26], and Non-negative Matrix Factorization
(NMF) [13, 14] have been proposed and successfully applied to
different applications in text mining, information retrieval, natural
language processing, and other related fields.

One of the main challenges in topic modeling is to handle large
numbers of documents and create large numbers of topics. For the
probabilistic topic models like LDA and PLSI, the scalability chal-
lenge mainly comes from the necessity of simultaneously updating
the term-topic matrix to meet the probability distribution assump-
tions. When the number of terms is large, which is inevitable in
real applications, this problem becomes particularly severe. For
the non-probabilistic methods of NMF and RLSI, the formulation
makes it possible to decompose the learning problem into multiple
sub-problems and conduct learning in parallel, and hence in general
they have better scalability than the probabilistic methods1. Refer
to [26] for detailed discussions.

The high scalability of non-probabilistic methods makes them
easier to be employed in practice. However, to handle millions or
even billions of documents, it is still necessary to further improve
their scalability and efficiency. In this paper, we investigate the
possibilities of further enhancing the scalability and efficiency of
non-probabilistic methods such as RLSI and NMF.

The method, called Group Matrix Factorization (GMF), assumes
that the documents have already been categorized into multiple
classes in a predefined taxonomy. This assumption is practical and
common in many real-world applications. For example, Wikipedia
data contains a hierarchical taxonomy with 25 classes at the first
layer. Each Wikipedia article falls into at least one of the classes.
The ODP project2 provides a taxonomy of semantic classes and
about 4 million web pages manually classified into the classes. The
data can be used for training a classifier and other webpages can
be classified into the classes by the classifier [2]. GMF further as-
sumes that there exists a set of class-specific topics for each of the
classes, and there also exists a set of shared topics for all of the
classes. Each document in the collection is specified by its classes,
class-specific topics, as well as shared topics. In this way, the large-
scale learning problem can be decomposed into small-scale sub-
problems. We refer to the strategy as the divide-and-conquer technique.

1Note that LSI needs to be solved by SVD due to its orthogonality
assumption and thus it is hard to be scaled up.
2http://www.dmoz.org/



In GMF, the documents in each of the classes are represented
as a term-document matrix. The term-document matrix is then ap-
proximated as the product of two matrices: one matrix represents
the shared topics as well as the class-specific topics, and the other
matrix represents the document representations based on the top-
ics. An objective function is defined to measure the goodness of
prediction of the data with the model. Optimization of the objec-
tive function leads to the automatic discovery of topics as well as
topic representations of the documents.

We show that GMF can be used to improve the efficiency and
scalability of non-probabilistic topic models, using RLSI and NMF
as examples. Specifically, we apply GMF to RLSI [26] and NMF [13,
14], obtaining the Group RLSI (GRLSI) and Group NMF (GNMF),
respectively. Like in RLSI, the objective function of GRLSI con-
sists of squared Frobenius norm as loss function, �1-regularization
on topics, and �2-regularization on document representations. Sim-
ilarly to NMF, GNMF also uses squared Frobenius norm as loss
function and non-negative constraints on the topics and document
representations. Algorithms for optimizing the loss functions of
GRLSI and GNMF are given and theoretical justification of the al-
gorithms is shown. Time complexity analysis show that GRLSI and
GNMF can achieve P times of speedup on RLSI and NMF respec-
tively, where P is the number of classes.

Experiments on two large datasets containing about 3 million
documents have verified the following points. (1) Both GRLSI and
GNMF can efficiently handle the documents on a single machine,
and the number is larger than those which can be processed by most
existing topic modeling methods. (2) GRLSI and GNMF are more
scalable and efficient than RLSI and NMF respectively, especially
when the number of topics is large. (3) In GRLSI and GNMF, the
shared topics as well as the class-specific topics are coherent and
meaningful. (4) Experiments on another relevance dataset show
that GRLSI and GNMF can help significantly improve search rele-
vance.

Exploiting the divide and conquer strategy in the non-probabilistic
methods has been investigated in computer vision [16, 25]. How-
ever, it was not clear whether it works for text data. As far as we
know, this is the first work on large scale text data. Our main con-
tributions in this paper lie in that we have empirically verified the
effectiveness of the divide and conquer strategy on text data, by
specifically implementing and testing the GRLSI and GNMF meth-
ods in large scale experiments.

2. RELATED WORK
The goal of topic modeling is to automatically discover the latent

topics in a document collection as well as model the documents by
representing them with the topics. Methods for topic modeling fall
into two categories: probabilistic approaches and non-probabilistic
approaches. In the probabilistic approaches, a topic is defined as
a probability distribution over terms and documents are viewed as
data generated from mixtures of topics. To generate a document,
one first chooses a topic distribution. Then, for each term in that
document , one chooses a topic according to the topic distribution,
and draws a term from the topic according to its term distribu-
tion. PLSI [11] and LDA [5] are two widely-used probabilistic
approaches to topic modeling. Please refer to [3] for a survey on
probabilistic topic models. In the non-probabilistic approaches, the
term vectors of documents (term-document matrix) are projected
into a topic space in which each axis corresponds to a topic. A doc-
ument is then represented as a vector of topics in the space. These
approaches are realized as factorization of the term-document ma-
trix such that the matrix is approximately equal to the product of a
term-topic matrix and a topic-document matrix under certain con-

straints. LSI [7] is a representative method, which performs the
factorization under the assumption that the topic vectors are or-
thonormal. In NMF [13, 14], the factor matrices are assumed to
be nonnegative, while in RLSI [26], the factor matrices are regular-
ized with �1 and/or �2 norms.

It has been demonstrated that topic modeling is useful for knowl-
edge discovery, search relevance ranking, and document classifica-
tion (e.g., [19, 27, 26]). Topic modeling is actually becoming one
of the most important technologies in text mining, information re-
trieval, natural language processing, and other related fields.

The topic modeling approaches that we have discussed so far are
completely unsupervised. Recently, researchers have also proposed
supervised or semi-supervised approaches to topic modeling. For
example, Supervised Latent Dirichlet Allocation (SLDA) [4] and
Supervised Dictionary Learning (SDL) [18] are methods for incor-
porating supervision into probabilistic and non-probabilistic topic
models. In this paper, we assume that documents have already been
classified into classes, and then we conduct topic modeling on the
basis of the classification to enhance scalability and efficiency.

Using document classes in topic modeling has been studied in
previous literature. For probabilistic approaches, Zhai et al.(2004),
for example, proposed incorporating class labels into a multinomial
mixture model in order to more accurately discover topics,such
that some topics are shared by all classes and other topics are spe-
cific to individual classes [28]. The discriminatively training of
LDA (DiscLDA) [12] and Partially Labeled Dirichlet Allocation
(PLDA) [22] incorporate class labels into LDA to achieve similar
goals. For the non-probabilistic approaches, Mairal et al. (2008) [17],
Bengio et al. (2009) [1], and Wang et al. (2011) [25] proposed us-
ing class labels in Sparse Coding [15, 20], a special case of RLSI, in
which a dictionary for each class (i.e., topics specific to each class)
is learned first, after that a common dictionary over all classes (i.e.,
topics shared by all classes) is learned, and finally the common and
class-specific dictionaries are learned simultaneously. Group Non-
negative Matrix Factorization (GNMF) [16] extends NMF in a sim-
ilar way. Both extensions on non-probabilistic methods were con-
ducted in computer vision. As can be seen, all the previous work
was not motivated toward enhancing scalability and efficiency. In
this paper, we also exploit class information in topic modeling and
our goal is to enhance scalability and efficiency. As far as we know,
this is the first time such an investigation is conducted on text data.
We also note that the formulation of GNMF in this paper is different
from that in [16].

3. GROUP MATRIX FACTORIZATION
We present the formulation of Group Matrix Factorization and

provide a probabilistic interpretation of it.

3.1 Problem Formulation
Suppose that we are given a document collectionD with size N,

containing terms from a vocabulary V with size M. A document
is represented as a vector d ∈ RM where each entry denotes the
score of the corresponding term, for example, a Boolean value in-
dicating occurrence, term frequency, tf-idf, etc. Each document is
associated with a class label y ∈ {1, · · · , P}. The N documents inD
can be classified into P classes according to their class labels and
represented asD = {D1, · · · ,DP}. Dp =

[
d(p)

1 , · · · , d(p)
Np

]
∈ RM×Np is

the term-document matrix corresponding to class p, in which each
row stands for a term and each column stands for a document. Np

is the number of documents in class p such that
∑P

p=1 Np = N.
A topic is defined as a subset of terms from V with important

weights, and is also represented as a vector u ∈ RM with each entry



corresponding to a term. Suppose that there are Ks shared topics,
denoted as a term-topic matrix U0 =

[
u(0)

1 , · · · ,u(0)
Ks

]
∈ RM×Ks , in

which each column corresponds to a shared topic. Also, for each
class p, there are Kc class-specific topics, which can also be repre-
sented by a term-topic matrix Up =

[
u(p)

1 , · · · ,u(p)
Kc

]
∈ RM×Kc , where

each column stands for a class-specific topic. Then, the total num-
ber of topics in the whole collection is K = Ks + PKc

3.
The documents in each class are then modeled by the shared

topics as well as the topics specific to their own class. Specifi-
cally, given the shared topics U0 and the class-specific topics Up,
document d(p)

n in class p is approximately represented as a linear
combination of these topics, i.e.,

d(p)
n ≈ Ũpv(p)

n =
[
U0,Up

]
v(p)

n , (1)

where Ũp =
[
U0,Up

]
∈ RM×(Ks+Kc) is the concatenated term-topic

matrix corresponding to class p, and v(p)
n ∈ RKs+Kc is the represen-

tation of document d(p)
n in latent topic space. Since a document

is represented only by the shared topics and the class-specific top-
ics corresponding to its own class, GMF actually decomposes the
large-scale matrix operations concerning all the topics into multi-
ple small-scale ones concerning only subsets of the topics, and thus
reduces the computational complexity.

Let Vp =
[
v(p)

1 , · · · , v(p)
Np

]
∈ R(Ks+Kc)×Np be the topic-document

matrix corresponding to class p. We denote VT
p =
[
HT

p ,W
T
p

]
such

that ŨpVp = U0Hp + UpWp, where Hp ∈ RKs×Np corresponds to
shared topics U0 and Wp ∈ RKc×Np corresponds to class-specific
topics Up. Table 1 gives a summary of notations.

Thus, given a document collection together with the class labels,
represented as D = {D1, · · · ,DP}, GMF amounts to solving the
following optimization problem:

min{
u(0)

k

}
,
{
u(p)

k

}
,
{
v(p)

n

}
P∑

p=1

Np∑
n=1

L
(
d(p)

n ||Ũpv(p)
n

)
+ θ1

Ks∑
k=1

R1

(
u(0)

k

)

+ θ2

P∑
p=1

Kc∑
k=1

R2

(
u(p)

k

)
+ θ3

P∑
p=1

Np∑
n=1

R3

(
v(p)

n

)
,

s.t. u(0)
k ∈ C1, k = 1, · · · ,Ks,

u(p)
k ∈ C2, k = 1, · · · ,Kc, p = 1, · · · , P,

v(p)
n ∈ C3, n = 1, · · · ,Np, p = 1, · · · , P, (2)

where L (·‖·) is a loss function that measures the quality of the ap-
proximation defined in Eq. (1); R1 (·), R2 (·), and R3 (·) are regular-
ization items on shared topics, class-specific topics, and document
representations, respectively; C1, C2, and C3 are feasible sets for
shared topics, class-specific topics, and document representations,
respectively; θ1, θ2, and θ3 are coefficients.

3.2 Probabilistic Interpretation
We give a probabilistic interpretation of GMF, as shown in Fig-

ure 1. In the graphical model, shared topics u(0)
1 , · · · ,u(0)

Ks
and class-

specific topics u(p)
1 , · · · ,u(p)

Kc
, p = 1, · · · , P, are parameters. All the

shared topics are independent from each other, with prior p
(
u(0)

k

)
∝

e−θ1R1
(
u(0)

k

)
and constraint u(0)

k ∈ C1 on each u(0)
k . All the class-

specific topics are independent from each other, with prior p
(
u(p)

k

)
∝

e
−θ2R2

(
u(p)

k

)
and constraint u(p)

k ∈ C2 on each u(p)
k . Document rep-

resentations v1, · · · , vN are regarded as latent variables, with prior
3A more general case is defining different numbers of class-specific
topics for different classes, which can also be modeled by GMF.

Table 1: Table of notations.
Notation Meaning

M Number of terms in vocabulary
N Number of documents in collection
P Number of classes
Np Number of documents in class p
Ks Number of shared topics
Kc Number of class-specific topics for each class
K Total number of topics
Dp ∈ RM×Np Term-document matrix corresponding to class p
d(p)

n ∈ RM The n-th document in class p
U0 ∈ RM×Ks Term-topic matrix of shared topics
u(0)

k ∈ RM The k-th shared topic
Up ∈ RM×Kc Term-topic matrix of class-specific topics for class p
u(p)

k ∈ RM The k-th class-specific topic in class p
Ũp =

[
U0,Up

]
Concatenated term-topic matrix corresponding to class p

Vp ∈ R(Ks+Kc)×Np Topic-document matrix corresponding to class p
v(p)

n ∈ RKs+Kc Representation of d(p)
n in topic space

Hp and Wp Components of Vp: VT
p =
[
HT

p ,W
T
p

]

uk
(p)

PK
c

yndnvn

N

uk
(0)

K
s

Figure 1: Graphical model of GMF.

p (vn) ∝ e−θ3R3(vn) and constraint vn ∈ C3 on each vn. Class la-
bels y1, · · · , yN are observed variables with a constant prior on each
yn. Documents d1, · · · , dN are also observed variables. Each doc-
ument is generated according to a probability distribution condi-
tioned on the shared topics, the class-specific topics, the corre-
sponding class label, and the corresponding latent variable, i.e.,
p
(
dn

∣∣∣ {u(0)
k

}
,
{
u(p)

k

}
, yn, vn

)
= p
(
dn

∣∣∣ {u(0)
k

}
,
{
u(yn)

k

}
, vn

)
∝ e−L(dn ||Ũyn vn).

Moreover, all triplets (yn, dn, vn) are independent given u(0)
1 , · · · u(0)

Ks

and u(p)
1 , · · · ,u(p)

Kc
, p = 1, · · · , P. It can be easily shown that GMF

formulation Eq. (2) can be obtained with Maximum A Posteriori
approximation.

GMF can be applied to non-probabilistic methods to further en-
hance their scalability and efficiency. Next, as examples, we define
Group RLSI (GRLSI) and Group NMF (GNMF) under the frame-
work of GMF.

4. GROUP RLSI
GRLSI adopts the squared Euclidean distance to measure the ap-

proximation quality and employs the same regularization schema
as in RLSI [26], i.e., �1-regularization on both shared and class-
specific topics and �2-regularization on document representations.
The optimization problem of GRLSI is as follows:

min{
u(0)

k

}
,
{
u(p)

k

}
,
{
v(p)

n

}
P∑

p=1

Np∑
n=1

∥∥∥d(p)
n − Ũpv(p)

n

∥∥∥2
2
+ λ1

Ks∑
k=1

∥∥∥u(0)
k

∥∥∥
1

+ λ1

P∑
p=1

Kc∑
k=1

∥∥∥u(p)
k

∥∥∥
1
+ λ2

P∑
p=1

Np∑
n=1

∥∥∥v(p)
n

∥∥∥2
2
, (3)

where λ1 is the parameter controlling the �1-regularization, and λ2



Algorithm 1 Group RLSI
Require: D1, · · · ,DP

1: for p = 1 : P do
2: Up ← zero matrix
3: Vp ← random matrix
4: end for
5: repeat
6: U0 ← UpdateU0

({
Dp

}
,
{
Up

}
,
{
Vp

})
7: for p = 1 : P do
8: Up ← UpdateUp

(
Dp,U0,Vp

)

9: Vp ← UpdateVp

(
Dp,U0,Up

)
10: end for
11: until convergence
12: return U0,U1, · · · ,UP,V1, · · · ,VP

is the parameter controlling the �2-regularization4. GRLSI decom-
poses the large-scale matrix operations in RLSI into multiple small-
scale ones and thus can be solved more efficiently.

4.1 Optimization
Optimization Eq. (3) is convex with respect to one of the vari-

ables U0, U1, · · · ,UP,V1, · · · ,VP when the others are fixed. Thus
we sequentially minimize the objective function with respect to
shared topics U0, class-specific topics U1, · · · ,UP, and document
representations V1, · · · ,VP. This procedure is summarized in Al-
gorithm 1.

4.1.1 Update of Matrix U0

Holding U1, · · · ,UP,V1, · · · ,VP fixed, the update of U0 amounts
to the following minimization problem:

min
U0

P∑
p=1

∥∥∥Dp − U0Hp − UpWp

∥∥∥2
F
+ λ1

M∑
m=1

Ks∑
k=1

∣∣∣u(0)
mk

∣∣∣ , (4)

where ‖·‖F is the Frobenius norm and u(0)
mk is the mk-th entry of U0.

Eq. (4) is equivalent to

min
U0
‖D − U0H‖2F + λ1

M∑
m=1

Ks∑
k=1

∣∣∣u(0)
mk

∣∣∣ , (5)

where D and H are defined as D = [D1 − U1W1, · · · ,DP − UPWP]
and H = [H1, · · · ,HP], respectively. Let d̄m = (dm1, · · · , dmN)T

and ū(0)
m =

(
u(0)

m1, · · · , u(0)
mKs

)T
be the column vectors whose entries

are those of the mth row of D and U0, respectively. Eq. (5) can be
decomposed into M subproblems that can be solved independently,
with each corresponding to one row of U0:

min
ū(0)

m

∥∥∥d̄m −HT ū(0)
m

∥∥∥2
2
+ λ1

∥∥∥ū(0)
m

∥∥∥
1
, (6)

for m = 1, · · · ,M.
Eq. (6) is an �1-regularized least squares problem, whose objec-

tive function is not differentiable and it is not possible to directly
apply gradient-based methods. A number of techniques can be used
here, such as interior point method [6], coordinate descent with
soft-thresholding [9, 10], Lars-Lasso algorithm [8, 21], and feature-
sign search [15]. Here we choose coordinate descent with soft-
thresholding. To do so, we calculate S0 = HHT =

∑P
p=1 HpHT

p ∈
4A more general case is setting different regularization parameters
for shared topics and class-specific topics, for separately control-
ling the sparsity of shared topics and class-specific topics.

Algorithm 2 UpdateU0

Require: D1, · · · ,DP,U1, · · · ,UP,V1, · · · ,VP

1: S0 ← ∑P
p=1 HpHT

p

2: R0 ← ∑P
p=1 DpHT

p −
∑P

p=1 UpWpHT
p

3: for m = 1 : M do
4: ū(0)

m ← 0
5: repeat
6: for k = 1 : Ks do
7: xmk ← r(0)

mk −
∑

l�k s(0)
kl u(0)

ml

8: u(0)
mk ← (|xmk |− 1

2 λ1)+sign(xmk)
s(0)
kk

9: end for
10: until convergence
11: end for
12: return U0

Algorithm 3 UpdateUp

Require: Dp,U0,Vp

1: Sp ←WpWT
p

2: Rp ← DpWT
p − U0HpWT

p

3: for m = 1 : M do
4: ū(p)

m ← 0
5: repeat
6: for k = 1 : Kc do
7: xmk ← r(p)

mk −
∑

l�k s(p)
kl u(p)

ml

8: u(p)
mk ← (|xmk |− 1

2 λ1)+sign(xmk)
s(p)
kk

9: end for
10: until convergence
11: end for
12: return Up

R
Ks×Ks and R0 = DHT =

∑P
p=1 DpHT

p −
∑P

p=1 UpWpHT
p ∈ RM×Ks ,

and then update U0 with the following update rule:

u(0)
mk ←

(∣∣∣r(0)
mk −
∑

l�k s(0)
kl u(0)

ml

∣∣∣ − 1
2λ1

)
+

sign
(
r(0)

mk −
∑

l�k s(0)
kl u(0)

ml

)

s(0)
kk

,

where s(0)
i j and r(0)

i j are the i j-th entry of S0 and R0, respectively, and
(·)+ denotes the hinge function. The algorithm for updating U0 is
summarized in Algorithm 2.

4.1.2 Update of Matrix Up

Holding the other variables fixed, the update of Up amounts to
the following optimization problem:

min
Up

∥∥∥Dp − U0Hp − UpWp

∥∥∥2
F
+ λ1

M∑
m=1

Kc∑
k=1

∣∣∣u(p)
mk

∣∣∣ , (7)

where u(p)
mk is the mk-th entry of Up. Eq. (7) can be optimized with

the same technique presented for optimizing Eq. (5). We calculate
Sp = WpWT

p ∈ RKc×Kc and Rp = DpWT
p − U0HpWT

p ∈ RM×Kc , and
then update Up with the following update rule:

u(p)
mk ←

(∣∣∣r(p)
mk −
∑

l�k s(p)
kl u(p)

ml

∣∣∣ − 1
2λ1

)
+

sign
(
r(p)

mk −
∑

l�k s(p)
kl u(p)

ml

)

s(p)
kk

,

where s(p)
i j and r(p)

i j are the i j-th entry of Sp and Rp, respectively.
The algorithm for updating Up is summarized in Algorithm 3.



Algorithm 4 UpdateVp

Require: Dp,U0,Up

1: Σp ←
(
ŨT

p Ũp + λ2I
)−1

2: Φp ← ŨT
p Dp

3: for n = 1 : Np do
4: v(p)

n ← Σpφ
(p)
n , where φ(p)

n is the n-th column of Φp

5: end for
6: return Vp

Table 2: Time complexity (per iteration) of RLSI and GRLSI.
RLSI GRLSI

Update U K2N+AvgDL×KN+IK2 M
Q

K2 N
P +AvgDL×KN+IK2 M

PQ

Update V γ2K2 M+K3+AvgDL×γKN+K2N
Q

γ2K2 M+ K3
P +AvgDL×γKN+ K2 N

P
PQ

4.1.3 Update of Matrix Vp

The update of Vp with the other variables fixed is a least squares
problem with �2-regularization. It can also be decomposed into Np

optimization problems, with each corresponding to one v(p)
n and can

be solved in parallel:

min
v(p)

n

∥∥∥d(p)
n − Ũpv(p)

n

∥∥∥2
2
+ λ2

∥∥∥v(p)
n

∥∥∥2
2
,

for n = 1, · · · ,Np. It is a standard �2-regularized least squares
problem and the solution is:

v(p)
n =

(
ŨT

p Ũp + λ2I
)−1

ŨT
p d(p)

n .

Algorithm 4 shows the procedure.

4.2 Time Complexity
The formulation of learning in GRLSI is decomposable and thus

can be processed in parallel. Specifically, the for-loops in Algo-
rithm 2 (i.e., line 3 to line 11), Algorithm 3 (i.e., line 3 to line 11),
and Algorithm 4 (i.e., line 3 to line 5) can be processed in parallel.
In this paper, we implement GRLSI as well as RLSI using multi-
threaded programming and compare their time complexities. Table
2 shows the results, where Q is the number of threads, γ the topic
sparsity, and AvgDL the average document length. For GRLSI, the
“Update U” includes the update of U0,U1, · · · ,UP and the “Update
V” includes the update of V1, · · · ,VP. From the results, we can see
that GRLSI is approximately P times faster than RLSI in terms of
time complexity. Here we suppose that 1) the documents are evenly
distributed to the P classes; 2) the number of class-specific topics
in each class is similar to the number of shared topics; and 3) the
topic sparsity of GRLSI is similar to the topic sparsity of RLSI.

4.3 Folding-in New Documents
Folding-in refers to the problem of computing representations of

documents that were not contained in the original training collec-
tion. When a new document d, represented as d ∈ RM in the term
space, is given, its representation in the topic space can be com-
puted under two different conditions. First, if the class label of the
document is given, denoted as yd, we represent the document in the
topic space as

vd = arg min
v
‖d − Ũyd v‖22 + λ2‖v‖22. (8)

Second, if the document label is unknown, we first define the error

Algorithm 5 Group NMF
Require: D1, · · · ,DP

1: U0 ← random matrix
2: for p = 1 : P do
3: Up ← random matrix
4: Vp ← random matrix
5: end for
6: repeat

7: U0 ← U0 ∗
∑P

p=1 DpHT
p∑P

p=1 U0HpHT
p+
∑P

p=1 UpWpHT
p

8: for p = 1 : P do

9: Up ← Up ∗ DpWT
p

UpWpWT
p+U0HpWT

p

10: Vp ← Vp ∗ ŨT
p Dp

ŨT
p ŨpVp

11: end for
12: until convergence
13: return U0,U1, · · · ,UP,V1, · · · ,VP

of classifying document d into class p as

E
(
d; Ũp

)
= min

v

∥∥∥d − Ũpv
∥∥∥2

2
+ λ2 ‖v‖22 ,

and predict the class label of document d by

yd = arg min
p
E
(
d; Ũp

)
.

We then represent the document in the topic space with Eq. (8).

5. GROUP NMF
Similarly we can define Group NMF (GNMF) by adopting the

squared Euclidean distance to measure the approximation quality
and employing the nonnegative constraints on shared topics, class-
specific topics, and document representations, as in NMF [13, 14].
The optimization problem of GNMF is as follows:

min{
u(0)

k

}
,
{
u(p)

k

}
,
{
v(p)

n

}
P∑

p=1

Np∑
n=1

∥∥∥d(p)
n − Ũpv(p)

n

∥∥∥2
2

s.t. u(0)
k ≥ 0, k = 1, · · · ,Ks,

u(p)
k ≥ 0, k = 1, · · · ,Kc, p = 1, · · · , P,

v(p)
n ≥ 0, n = 1, · · · ,Np, p = 1, · · · , P, (9)

which decomposes the large-scale matrix operations in NMF into
multiple small-scale ones and thus can be solved more efficiently.

5.1 Optimization
Optimization Eq. (9) is convex with respect to one of the vari-

ables U0, U1, · · · ,UP, V1, · · · ,VP while keeping the others fixed.
We again sequentially minimize the objective function with respect
to shared topics U0, class-specific topics U1, · · · ,UP, and docu-
ment representations V1, · · · ,VP. The procedure is summarized in
Algorithm 5, where the operator “∗” represents the entry-wise mul-
tiplication, and the division is also entry-wise.

The multiplicative update rules in Algorithm 5 were first pro-
posed in [16] and then applied in [25]. However, neither [16]
nor [25] gave sufficient evidence to demonstrate the correctness of
them. Here, we theoretically justify Algorithm 5, showing that the
objective in Eq. (9) is nonincreasing under the update rules in Al-
gorithm 5. We first proof Proposition 1.



Proposition 1. Given X,Y ∈ RM×N
+ and S ∈ RK×N

+ , consider op-
timization problem minA≥0 ‖X − Y − AS‖2F. The objective is nonin-
creasing under the update rule

A← A ∗ XST

ASST + YST
,

where the operator “∗” represents the entry-wise multiplication,
and the division is also entry-wise.

A proof sketch of the proposition can be found in Appendix.

5.1.1 Update of Matrix U0

Holding U1, · · · ,UP,V1, · · · ,VP fixed, the update of U0 amounts
to the following minimization problem:

min
U0≥0

P∑
p=1

∥∥∥Dp − U0Hp − UpWp

∥∥∥2
F
,

which can be rewritten as

min
U0≥0
‖E − F − U0H‖2F ,

where E, F, and H are respectively defined as E = [D1, · · · ,DP],
F = [U1W1, · · · ,UPWP], and H = [H1, · · · ,HP]. It is easy to show
that the objective is nonincreasing under the update rule

U0 ← U0 ∗
∑P

p=1 DpHT
p∑P

p=1 U0HpHT
p +
∑P

p=1 UpWpHT
p

,

according to Proposition 1.

5.1.2 Update of Matrix Up

Holding the other variables fixed, the update of Up amounts to
the following optimization problem:

min
Up≥0

∥∥∥Dp − U0Hp − UpWp

∥∥∥2
F
.

According to Proposition 1 we get the multiplicative update rule:

Up ← Up ∗
DpWT

p

UpWpWT
p + U0HpWT

p

,

which keeps the objective nonincreasing.

5.1.3 Update of Matrix Vp

The update of Vp with the other variables fixed amounts to the
following optimization problem:

min
Vp≥0

∥∥∥Dp − ŨpVp

∥∥∥2
F
.

As demonstrated in [14], Vp can be updated with the following
update rule:

Vp ← Vp ∗
ŨT

p Dp

ŨT
p ŨpVp

,

which keeps the objective nonincreasing.

5.2 Time Complexity
The multiplicative update rules of GNMF (i.e., line 7, line 9,

and line 10 in Algorithm 5) can be processed in parallel since the
multiplication and division are both entry-wise. In this paper, we
implement GNMF as well as NMF using multithreaded program-
ming and compare their time complexities. Table 3 shows the re-
sults, where Q is the number of threads and AvgDL is the average
document length. For GNMF, the “Update U” includes the up-
date of U0,U1, · · · ,UP and the “Update V” includes the update of

Table 3: Time complexity (per iteration) of NMF and GNMF.
NMF GNMF

Update U AvgDL×KN+K2 M+K2N
Q

AvgDL×KN+K2 M+ K2 N
P

PQ

Update V AvgDL×KN+K2 M+K2N
Q

AvgDL×KN+K2 M+ K2 N
P

PQ

V1, · · · ,VP. From the results, we can see that GNMF are approxi-
mately P times faster than NMF in terms of time complexity. Here
we also make the same assumptions as in Section 4.2.

5.3 Folding-in New Documents
Given a new document d ∈ RM , its representation in the topic

space can be computed under two different conditions. First, if the
class label yd is also given, we can represent the document in the
topic space as

vd = arg min
v≥0
‖d − Ũyd v‖22. (10)

Second, if the document label is unknown, we first define the error
of classifying document d into class p as

E
(
d; Ũp

)
= min

v≥0

∥∥∥d − Ũpv
∥∥∥2

2
,

and predict the class label of document d by

yd = arg min
p
E
(
d; Ũp

)
.

We then represent the document in the topic space with Eq. (10).

6. RELEVANCE RANKING
Topic modeling can be used in a wide variety of applications. We

apply GRLSI and GNMF to relevance ranking in search and eval-
uate their performances in comparison to RLSI and NMF respec-
tively. The use of topic modeling techniques such as LSI was pro-
posed in IR many years ago [7]. Two recent works [27, 26] demon-
strated that improvements on relevance ranking can be achieved by
using topic modeling.

The motivation of incorporating topic modeling into relevance
ranking is to reduce “term mismatch”. Traditional relevance mod-
els, such as VSM [24] and BM25 [23], are all based on term match-
ing. The term mismatch problem arises when the author of a docu-
ment and the user of a search system use different terms to describe
the same concept, and in such a case the search may not be carried
out successfully. For example, if the query contains the term “air-
plane” but the document contains the term “aircraft”, then there is a
mismatch and the document may not be viewed as relevant. In the
topic space, however, it is very likely that the two terms are in the
same topic, and thus the use of matching score in the topic space
may help improve the relevance ranking. In practice it is benefi-
cial to combine topic matching scores with term matching scores,
to leverage both broad topic matching and specific term matching.

A general way of using topic models in IR is as follows. Sup-
pose that there is a pre-learned topic model. Given a query q and
a document d, we first represent them in the topic space as vq and
vd respectively. Then we calculate the matching score between the
query and the document in the topic space as the cosine similar-
ity between vq and vd. The topic matching score stopic(q, d) is then
linearly combined with the term matching score sterm(q, d) for fi-
nal relevance ranking. The final relevance ranking score s(q, d) is
calculated as:

s(q, d) = αstopic(q, d) + (1 − α)sterm(q, d), (11)



Table 4: Sizes of Wikipedia and Web-I.
Dataset # terms # documents # classes

Wikipedia 610,035 2,807,535 25
Web-I 530,905 3,184,138 204

Table 5: Statistics of Wikipedia and Web-I.
Dataset Min Max R Mean STD CV

Wikipedia 185 991,695 991,510 112301.4 200123.6 1.8
Web-I 226 29,999 29,773 15608.5 11152.0 0.7

where α ∈ [0, 1] is the coefficient. sterm(q, d) can be calculated with
any existing term-based model, for example, VSM and BM25.

7. EXPERIMENTS
We have conducted experiments to test the efficiency and effec-

tiveness of GRLSI and GNMF.

7.1 Experimental Settings
We tested the efficiency and effectiveness of GRLSI and GNMF

on two datasets5: Wikipedia dataset which consists of articles down-
loaded from the English version of Wikipedia and Web-I dataset
which consists of webpages randomly sampled from a crawl of the
Internet at a commercial search engine. The Wikipedia dataset con-
tains 2,807,535 articles and the Web-I dataset contains 3,184,138
web documents. For both datasets, the titles and bodies were taken
as the contents of the documents. Stop words in a standard list and
terms whose total frequencies are less than 10 were removed. Table
4 lists the sizes of Wikipedia and Web-I datasets.

In the Wikipedia dataset, documents are associated with labels
representing the categories of them. We adopted the 25 first-level
categories in the Wikipedia hierarchy, i.e., each Wikipedia docu-
ment is categorized into one of the 25 categories. The categories in-
clude “agriculture”, “arts”, “business”, “education”, “law”, etc. In
the Web-I dataset, similarly, all documents are categorized into one
of the ODP categories by a built-in classifier at the search engine.
There are 204 categories from the second-level ODP categories, in-
cluding “arts/music”, “business/management”, “computer/graphics”,
“science/chemistry”, “sports/baseball”, etc. Table 5 gives the statis-
tics of both Wikipedia and Web-I, where Min and Max stand for
the minimal and maximal class sizes respectively, R is the range of
class sizes, i.e., R = Max−Min, Mean and STD represent the mean
value and the standard deviation of class sizes respectively, and CV
is the coefficient of variance, i.e., CV = STD/Mean. One can see
that Web-I has smaller R and CV values, indicating that it has a
smaller degree of dispersion in the distribution of class sizes. From
the table, we can see that although these two datasets have similar
data sizes, the granularities of classes, i.e., number of classes and
average number of documents per class, are very different.

We tested RLSI, NMF, GRLSI and GNMF on the Wikipedia
dataset and Web-I dataset under different parameter settings. We
used single machine implementations of the methods. Specifically,
for the Wikipedia dataset, we set the number of class-specific top-
ics per class and the number of shared topics in GRLSI and GNMF
as (Ks,Kc) = (10, 4)/(20, 8)/(50, 20)/(100, 40), resulting in K =
110/220/550/1100 total number of topics. (Note that the total
number of topics in GRLSI and GNMF is Ks+25×Kc, where 25 is
the number of classes in the Wikipedia dataset.) We set the number
of topics in RLSI and NMF as 110/220/550/1100 for fair compari-
son. For the Web-I dataset, we decided the number of class-specific

5We plan to release the two datasets to the research communities.

Table 6: Execution time (per iteration) of RLSI on Wikipedia.
Min. K = 110 K = 220 K = 550 K = 1100

λ1 = 0.01 19.49 44.13 110.35 342.59
λ1 = 0.02 19.02 43.64 93.47 332.33
λ1 = 0.05 16.73 34.63 90.45 318.27
λ1 = 0.1 14.91 27.26 89.92 307.67

Table 7: Execution time (per iteration) of GRLSI on Wikipedia.
Min. K = 110 K = 220 K = 550 K = 1100

λ1 = 0.01 14.99 23.27 51.95 106.13
λ1 = 0.02 14.01 22.88 50.17 104.13
λ1 = 0.05 13.95 22.68 48.25 99.03
λ1 = 0.1 14.05 22.47 48.07 97.13

topics per class and the number of shared topics in GRLSI and
GNMF as (Ks,Kc) = (10, 5)/(20, 10)/(40, 20)/(100, 50), resulting
in K = 1030/2060/4120/10300 as the total number of topics. (The
total number of topics in GRLSI and GNMF is Ks + 204 × Kc,
where 204 is the number of classes in the Web-I dataset.) As will
be explained later, we found that it is not possible to run RLSI
and NMF with such large numbers of topics on a single machine.
Thus, we determined the number of topics in RLSI and NMF as
100/200/500/1000. Parameter λ1 in GRLSI and RLSI, which con-
trols the sparsity of topics, was selected from 0.01/0.02/0.05/0.1,
for both datasets. Parameter λ2 in GRLSI and RLSI was fixed to
0.1, following the experimental results in [26].

We also conducted search relevance experiments to test the ef-
fectiveness of GRLSI and GNMF on another dataset, the Web-II
dataset, which is obtained from the same web search engine. The
dataset consists of 752,365 documents, 30,000 queries, and rel-
evance judgments on the documents with respect to the queries.
The relevance judgments are at five levels: “perfect”, “excellent”,
“good”, “fair”, and “bad”. There are in total 837,717 judged query-
document pairs. The documents in Web-II are classified into 204
ODP categories with the same classifier as in Web-I. We randomly
split the queries into validation/test sets, each has 15,000/15,000
queries. We used the validation set for parameter tuning and the test
set for evaluation. We adopted MAP and NDCG at the positions of
1, 3, 5, and 10 as evaluation measures for relevance ranking. When
calculating MAP, we considered “perfect”, “excellent”, and “good”
as “relevant”, and the other two as “irrelevant”.

All of the experiments were conducted on a server with AMD
Opteron 2.10GHz multi-core processor (2×12 cores), 96GB RAM.
All the methods were implemented using C# multithreaded pro-
gramming, with the thread number being 24.

7.2 Experiment 1
In this experiment, we evaluated the efficiency improvement of

GRLSI and GNMF over RLSI and NMF on the Wikipedia dataset
and the Web-I dataset. We ran all the methods in 100 iterations. For
each method, the average execution time per iteration was recorded.

Table 6 and Table 7 report the average execution time per itera-
tion for RLSI and GRLSI on Wikipedia, under different settings of
topic numbers and λ1 values. Figure 2 further shows average time
per iteration of GRLSI and RLSI versus numbers of topics when
λ1 = 0.01. Figure 3 shows the average time per iteration of GNMF
over NMF on Wikipedia, versus numbers of topics. From these
results, we can conclude that GRLSI and GNMF consistently out-
perform RLSI and NMF, respectively, in terms of efficiency. More
speedup can be achieved when total number of topics increases.
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Figure 2: Execution time of RLSI and GRLSI on Wikipedia.
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Figure 3: Execution time of NMF and GNMF on Wikipedia.

The results indicate that GRLSI and GNMF are superior to RLSI
and NMF in terms of efficiency.

Table 8 and Table 9 report the average execution time per itera-
tion for RLSI and GRLSI on Web-I with respect to different settings
of topic numbers and λ1 values. Figure 4 shows the average exe-
cution time per iteration of GRLSI and RLSI when λ1 equals 0.01.
Figure 5 shows the results of GNMF and NMF. In fact we were not
able to run RLSI and NMF on the single machine, when the num-
ber of topics is larger than 1,000. The results indicate that GRLSI
and GNMF have better efficiency and scalability, particularly when
the number of topics gets large.

From the experimental results reported above, we can conclude
that applying GMF to non-probabilistic methods of RLSI and NMF
can significantly improve the efficiency and scalability of them.
The proposed GRLSI and GNMF methods can handle much larger
numbers of topics and much larger datasets.

Next, we evaluated the effectiveness of GRLSI and GNMF by
checking the readability of the topics generated by them. As ex-
ample, we show the topics generated by GRLSI and GNMF in
the setting of (Ks = 20,Kc = 8(10), λ1 = 0.01, λ2 = 0.1) for
both Wikipedia and Web-I. Table 10 and Table 11 present exam-
ple topics randomly selected from the topics discovered by GRLSI
and GNMF on Wikipedia and Web-I. For each of the datasets and
each of the methods, 3 shared topics and 9 class-specific topics
are presented. The corresponding class labels are also shown for
the class-specific topics. Top 6 weighted terms are shown for each
topic. From all the results (including the results in other parameter
settings), we found that (1) GRLSI and GNMF can discover read-
able topics. Both of the shared topics and the class-specific topics
are coherent and easy to understand. (2) For each class, GRLSI
and GNMF can discover class-specific topics that characterize the
class. (3) GRLSI discovers compact topics (the average topic com-
pactness AvgComp = 0.0032 for Wikipedia topics and AvgComp
= 0.0018 for Web-I topics) 6 as expected.

6Average topic compactness is defined as average ratio of terms
with non-zero weights per topic.

Table 8: Execution time (per iteration) of RLSI on Web-I.
Min. K = 100 K = 200 K = 500 K = 1000

λ1 = 0.01 26.57 49.79 123.45 324.58
λ1 = 0.02 26.79 39.24 117.54 313.49
λ1 = 0.05 23.23 34.64 110.67 303.24
λ1 = 0.1 14.19 32.68 100.25 301.74

Table 9: Execution time (per iteration) of GRLSI on Web-I.
Min. K = 1030 K = 2060 K = 4120 K = 10300

λ1 = 0.01 35.48 57.50 104.37 438.29
λ1 = 0.02 35.30 55.60 99.46 427.22
λ1 = 0.05 35.36 52.63 94.78 414.37
λ1 = 0.1 34.86 50.44 92.15 409.25

We further evaluated the shared topics discovered from Wikipedia
(Table 10) and Web-I (Table 11). In the Web-I dataset, the shared
topics seem to characterize general information. In the Wikipedia
dataset some of the shared topics are similar to the class-specific
topics in category “geography”. We checked the Wikipedia dataset
and found that this is because more than one third of Wikipedia ar-
ticles fall into category “geography”, and some geography related
topics appear to be general in the document collection.

From the experimental results reported above, we can conclude
that applying GMF to non-probabilistic methods of RLSI and NMF
can maintain the same level of readability while significantly im-
proving the efficiency and scalability. The resulting methods of
GRLSI and GNMF can really find coherent and meaningful topics.
This is true for not only class-specific topics, but also shared topics.

7.3 Experiment 2
In this experiment, we tested the effectiveness of GRLSI and

GNMF by using the topics generated by them with the Web-I dataset
in search relevance ranking on the Web-II dataset7. Specifically,
for GRLSI, we combined the topic matching scores with the term
matching scores given by BM25, denoted as “BM25+GRLSI”. We
took RLSI and CRLSI as baselines, denoted as “BM25+RLSI” and
“BM25+CRLSI”, respectively. In the former an RLSI model is
trained for the whole Web-I dataset and in the latter an RLSI model
is trained for each class. Similarly, for GNMF, we combined the
topic matching scores with the term matching scores by BM25, de-
noted as “BM25+GNMF”. We took NMF and CNMF as baselines,
denoted as “BM25+NMF” and “BM25+CNMF”, respectively. In
the former an NMF model is trained for the whole Web-I dataset
and in the latter an NMF model is trained for each class.

GRLSI, RLSI, GNMF, and NMF were trained on Web-I dataset
with the same parameter settings in Section 7.1. For CRLSI and
CNMF, we also trained the models on Web-I dataset under the same
parameter settings in Section 7.1, except parameter Ks, as there
exists no shared topic in CRLSI and CNMF.

To evaluate the relevance performance of these topic models on
Web-II, we took a heuristic method for relevance ranking. Given
a query q and a document d (and its label yd), the method as-
signs the query into the same class that the document belongs to,
i.e., class yd, and then calculates the matching score between the
query and the document in the topic space using the techniques de-
scribed above for GRLSI and CRLSI (also GNMF and CNMF).
The method then ranks the documents based on their relevance
scores. The relevance score of a document is calculated as a lin-
ear combination of the BM25 score and the topic matching score

7We did not try to use the topics generated with Wikipedia, because
the categories are not consistent with the categories in Web-II.



Table 10: Topics discovered by GRLSI (top) and GNMF (bottom) on Wikipedia.
Shared topics Arts Geography Politics

G
R

L
SI

commune state political album rock groups province municipality communes elections states kingdom
communes highways party albums american musical state municipalities commune election congressional political
department route colour singers musicians music village gmina department weapon delegations parties
places highway india musicians singers rappers villages voivodeship france party elections country
france india canada track country metal highways population departments parties united party
populated brazil australia listing english heavy united germany places political senate fascism

G
N

M
F

places new language album groups rappers village district department elections war military
populated york japanese albums rock musicians villages germany commune election world country
village city films track american american england districts communes results poland units
azerbaijan zealand cast listing musical singers india town france members weapons formations
population jersey chinese released metal singles population administrative departments parties conflict army
municipality routes english band musicians wiley central towns home held union infantry

Table 11: Topics discovered by GRLSI (top) and GNMF (bottom) on Web-I.
Shared topics Arts/literature Business/healthcare Computers/internet

G
R

L
SI

video business games poems harry book dental healthcare care chat facebook web
phone services game poetry potter chapter dentist practice medical teen people hosting
mobile company cheats poem books summary care test health online connect design
tv service xbox poets rowling books dentistry management equipment people sign website
cell products ign love series analysis dentists exam ppo friends web domain
phones management pc poet children author health patient supplies join password internet

G
N

M
F

www products day poems harry books dentist healthcare medical google facebook design
http product october quotes potter children dentists management equipment maps people web
org quality september shakespear rowling read dentistry patient supplies blog connect website
website buy july william series reading dr hospital surgical gmail sign development
net accessories june poetry deathly list dental solutions patient map friends marketing
html store august poets hallows readers cosmetic nursing hospital engine password graphic
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Figure 4: Execution time of RLSI and GRLSI on Web-I.

between the document and the query. For RLSI (also NMF), neither
document labels nor query labels were needed. We directly calcu-
lated the matching score between a query and a document in the
topic space using the techniques described in [26]. The trading-off
parameter α in the linear combination was set from 0 to 1 in steps
of 0.1 for all methods. The heuristic method of automatic assign-
ment of a query into a class has the advantage of better efficiency in
online prediction, given that usually the number of classes is large.
Even though this is heuristic, our experimental results show that it
is effective.

Table 12 and Table 13 show the retrieval performance of RLSI
families and NMF families on the test set of Web-II respectively,
obtained with the best parameter setting determined by the valida-
tion set. From the results, we can see that (1) all of these meth-
ods can significantly improve the baseline BM25 (t-test, p-value
< 0.05). (2) GRLSI and GNMF perform significantly better than
CRLSI and CNMF respectively (t-test, p-value < 0.05), indicat-
ing the effectiveness of Group Matrix Factorization, specifically,
the use of shared topics. (3) GRLSI and GNMF perform slightly
worse than RLSI and NMF, but they can achieve much higher ef-
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Figure 5: Execution time of NMF and GNMF on Web-I.

ficiency and scalability, as described in Section 7.2. The decreases
of accuracy by GRLSI and GNMF are very small, e.g., NDCG@1
drops only 0.0010 for GRLSI and 0.0011 for GNMF. (4) The NMF
families perform better than the RLSI families. This is because
we did not further tune the parameters for the RLSI families. The
results in [26] show that with fine tuning RLSI can achieve high
performances, and we anticipate that this is also the case for the
other RLSI methods. We conclude that both GRLSI and GNMF
are useful for relevance ranking with high accuracies.

8. CONCLUSIONS
In this paper, we have investigated the possibilities of further

enhancing the scalability and efficiency of non-probabilistic topic
modeling methods. We have proposed a general topic modeling
technique, referred to as Group Matrix Factorization (GMF), which
conducts topic modeling on the basis of existing classes of docu-
ments. Thus the learning of a large number of topics (i.e.,class-
specific topics) can be performed in parallel. Although the strat-
egy has been tried in computer vision, this is the first compre-



Table 12: Relevance performance of RLSI families on Web-II.
Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3006 0.3043 0.3490 0.3910 0.4805
BM25+RLSI 0.3050 0.3076 0.3539 0.3943 0.4858

BM25+CRLSI 0.3027 0.3051 0.3509 0.3927 0.4840
BM25+GRLSI 0.3039 0.3066 0.3520 0.3934 0.4855

Table 13: Relevance performance of NMF families on Web-II.
Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3006 0.3043 0.3490 0.3910 0.4805
BM25+NMF 0.3057 0.3091 0.3546 0.3960 0.4895

BM25+CNMF 0.3033 0.3055 0.3512 0.3934 0.4869
BM25+GNMF 0.3046 0.3080 0.3530 0.3955 0.4887

hensive study of it on text data, as far as we know. The GMF
technique can be further specified in individual non-probabilistic
methods. We have applied GMF to RLSI and NMF, obtaining
Group RLSI (GRLSI) and Group NMF (GNMF), and theoretically
demonstrated that GRLSI and GNMF are much more efficient and
scalable than RLSI and NMF in terms of time complexity.

We have conducted experiments on two large datasets to test the
performances of GRLSI and GNMF. Both datasets contain about
3 million documents. Experimental results show that GRLSI and
GNMF are much faster and scalable than existing methods such as
RLSI and NMF, especially when the number of topics is large. We
have also verified that GMF can discover meaningful topics and the
topics can be used to improve search relevance. As future work,
we plan to implement GMF on distributed systems and perform
experiments on even larger datasets.
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Appendix
Proof sketch of Proposition 1. The proof will follow closely the

proof given in [14] for the case Y = 0. First note that the objective
is decomposable in the rows of A. Considering the case of a single
row, denoted as ā, leads to the objective

F (ā) =
∥∥∥x̄ − ȳ − ST ā

∥∥∥2
2
,

where x̄ and ȳ are the corresponding rows of X and Y respectively.
Define the auxiliary function G

(
ā, āt) as

G
(
ā, āt) = F (ā) +

(
ā − āt)T ∇āF

(
āt) + (ā − āt)T Ω (āt) (ā − āt) ,

where Ω
(
āt) is a diagonal matrix defined as

ωt
i j = δi j

(
SST āt

)
i
+ (Sȳ)i

(āt)i
.

Here, δi j is equal to 1 if i = j and 0 otherwise. Then the update rule
can be derived using the methods in [14].


