Design, testing and validation of model predictive control for an unmanned ground vehicle
[thesis]
Subhan Khan
2022
The rapid increase in designing, manufacturing, and using autonomous robots has attracted numerous researchers and industries in recent decades. The logical motivation behind this interest is the wide range of applications. For instance, perimeter surveillance, search and rescue missions, agriculture, and construction. In this thesis, motion planning and control based on model predictive control (MPC) for unmanned ground vehicles (UGVs) is tackled. In addition, different variants of MPC are
more »
... gned, analysed, and implemented for such non-holonomic systems. It is imperative to focus on the ability of MPC to handle constraints as one of the motivations. Furthermore, the proliferation of computer processing enables these systems to work in a real-time scenario. The controller's responsibility is to guarantee an accurate trajectory tracking process to deal with other specifications usually not considered or solved by the planner. However, the separation between planner and controller is not necessarily defined uniquely, even though it can be a hybrid process, as seen in part of this thesis. Firstly, a robust MPC is designed and implemented for a small-scale autonomous bulldozer in the presence of uncertainties, which uses an optimal control action and a feed-forward controller to suppress these uncertainties. More precisely, a linearised variant of MPC is deployed to solve the trajectory tracking problem of the vehicle. Afterwards, a nonlinear MPC is designed and implemented to solve the path-following problem of the UGV for masonry in a construction context, where longitudinal velocity and yaw rate are employed as control inputs to the platform. For both the control techniques, several experiments are performed to validate the robustness and accuracy of the proposed scheme. Those experiments are performed under realistic localisation accuracy, provided by a typical localiser. Most conspicuously, a novel proximal planning and control strategy is implemented in the presence of skid-slip and dynamic and static collisi [...]
doi:10.26190/unsworks/24076
fatcat:uyzzf6l52faohdhej2sdqymfue